Pellerin David, Méreaux Jean-Loup, Boluda Susana, Danzi Matt C, Dicaire Marie-Josée, Davoine Claire-Sophie, Genis David, Spurdens Guinevere, Ashton Catherine, Hammond Jillian M, Gerhart Brandon J, Chelban Viorica, Le Phuong U, Safisamghabadi Maryam, Yanick Christopher, Lee Hamin, Nageshwaran Sathiji K, Matos-Rodrigues Gabriel, Jaunmuktane Zane, Petrecca Kevin, Akbarian Schahram, Nussenzweig André, Usdin Karen, Renaud Mathilde, Bonnet Céline, Ravenscroft Gianina, Saporta Mario A, Napierala Jill S, Houlden Henry, Deveson Ira W, Napierala Marek, Brice Alexis, Molina Porcel Laura, Seilhean Danielle, Zuchner Stephan, Durr Alexandra, Brais Bernard
Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC H3A 2B4, Canada.
Brain. 2025 Apr 3;148(4):1258-1270. doi: 10.1093/brain/awae312.
Spinocerebellar ataxia 27B (SCA27B) is a common autosomal dominant ataxia caused by an intronic GAA•TTC repeat expansion in FGF14. Neuropathological studies have shown that neuronal loss is largely restricted to the cerebellum. Although the repeat locus is highly unstable during intergenerational transmission, it remains unknown whether it exhibits cerebral mosaicism and progressive instability throughout life. We conducted an analysis of the FGF14 GAA•TTC repeat somatic instability across 156 serial blood samples from 69 individuals, fibroblasts, induced pluripotent stem cells and post-mortem brain tissues from six controls and six patients with SCA27B, alongside methylation profiling using targeted long-read sequencing. Peripheral tissues exhibited minimal somatic instability, which did not significantly change over periods of more than 20 years. In post-mortem brains, the GAA•TTC repeat was remarkably stable across all regions, except in the cerebellar hemispheres and vermis. The levels of somatic expansion in the cerebellar hemispheres and vermis were, on average, 3.15 and 2.72 times greater relative to other examined brain regions, respectively. Additionally, levels of somatic expansion in the brain increased with repeat length and tissue expression of FGF14. We found no significant difference in methylation of wild-type and expanded FGF14 alleles in post-mortem cerebellar hemispheres between patients and controls. In conclusion, our study revealed that the FGF14 GAA•TTC repeat exhibits a cerebellar-specific expansion bias, which may explain the pure cerebellar involvement in SCA27B.
脊髓小脑共济失调27B型(SCA27B)是一种常见的常染色体显性共济失调,由FGF14基因内含子中的GAA•TTC重复序列扩增引起。神经病理学研究表明,神经元丢失主要局限于小脑。尽管该重复序列位点在代际传递过程中高度不稳定,但尚不清楚它在整个生命过程中是否表现出大脑镶嵌现象和进行性不稳定。我们对来自69名个体的156份连续血样、成纤维细胞、诱导多能干细胞以及6名对照和6名SCA27B患者的死后脑组织进行了FGF14 GAA•TTC重复序列体细胞不稳定性分析,并使用靶向长读测序进行甲基化分析。外周组织表现出最小的体细胞不稳定性,在超过20年的时间里没有显著变化。在死后大脑中,GAA•TTC重复序列在所有区域都非常稳定,除了小脑半球和蚓部。小脑半球和蚓部的体细胞扩增水平相对于其他检查的脑区平均分别高出3.15倍和2.72倍。此外,大脑中的体细胞扩增水平随着FGF14的重复长度和组织表达而增加。我们发现患者和对照死后小脑半球中野生型和扩增型FGF14等位基因的甲基化没有显著差异。总之,我们的研究表明FGF14 GAA•TTC重复序列表现出小脑特异性的扩增偏向,这可能解释了SCA27B中单纯的小脑受累情况。