Zhu Tengyi, Li Shuyin, Tao Cuicui, Chen Wenxuan, Chen Ming, Zong Zhiyuan, Wang Yajun, Li Yi, Yan Bipeng
School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, PR China.
Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research (UFZ), 04318, Leipzig, Germany.
Water Res. 2025 Jan 1;268(Pt A):122570. doi: 10.1016/j.watres.2024.122570. Epub 2024 Oct 2.
The pervasive presence of microplastics (MPs) in aquatic systems facilitates the transmission of antibiotic resistance genes (ARGs), thereby posing risks to ecosystems and human well-being. However, owing to variations in environmental backgrounds and the limited scope of research subjects, studies on ARGs in MPs lack unified conclusions, particularly regarding whether different types of MPs selectively promote ARG enrichment. Analysing large-scale datasets can better encompass broad spatiotemporal scales and diverse samples, facilitating a more extensive exploration of the complex ecological relationships between MPs and ARGs. The present study integrated existing metagenomic datasets to conduct a comprehensive risk assessment and comparative analysis of resistance groups across various MPs. In addition, we endeavoured to elucidate potential associations between ARGs and bacterial taxa, as well as MP structural features, using machine learning (ML) methods. The findings of our research highlight the pivotal role of MP type in shaping plastispheres, accounting for 9.56 % of the biotic variation (Adonis index) and explaining 18.59 % of the ARG variance. Compared to conventional MPs, biodegradable MPs, such as polyhydroxyalkanoates (PHA) and polylactic acid (PLA), exhibit lower species uniformity and diversity but pose a higher risk of ARG occurrence. These ML approaches effectively forecasted ARG abundance by using the bacterial taxa and molecular structure descriptors (MDs) of MPs (average R = 0.882, R = 0.759). Feature analysis showed that MDs associated with lipophilicity, solubility, toxicity, and surface potential significantly influenced the relative abundance of ARGs in the plastispheres. The interpretable multiple linear regression (MLR) model, particularly notable, elucidated a linear relationship between bacterial genera and ARGs, offering promise for identifying potential ARG hosts. This study offers novel insights into ARG dynamics and ecological risks within aquatic plastispheres, highlighting the importance of comprehensive MP monitoring initiatives.
微塑料(MPs)在水生系统中的广泛存在促进了抗生素抗性基因(ARGs)的传播,从而对生态系统和人类健康构成风险。然而,由于环境背景的差异和研究对象范围有限,关于MPs中ARGs的研究缺乏统一结论,特别是不同类型的MPs是否会选择性地促进ARGs富集。分析大规模数据集可以更好地涵盖广泛的时空尺度和多样的样本,有助于更广泛地探索MPs与ARGs之间复杂的生态关系。本研究整合了现有的宏基因组数据集,对各种MPs中的抗性组进行了全面的风险评估和比较分析。此外,我们还尝试使用机器学习(ML)方法阐明ARGs与细菌类群以及MP结构特征之间的潜在关联。我们的研究结果突出了MP类型在塑造塑料球中的关键作用,占生物变异的9.56%(阿多尼斯指数),并解释了18.59%的ARGs变异。与传统MPs相比,可生物降解的MPs,如聚羟基脂肪酸酯(PHA)和聚乳酸(PLA),物种均匀度和多样性较低,但ARGs出现的风险较高。这些ML方法通过使用MPs的细菌类群和分子结构描述符(MDs)有效地预测了ARGs丰度(平均R = 0.882,R = 0.759)。特征分析表明,与亲脂性、溶解性、毒性和表面电位相关的MDs显著影响了塑料球中ARGs的相对丰度。特别值得注意的是,可解释的多元线性回归(MLR)模型阐明了细菌属与ARGs之间的线性关系,为识别潜在的ARGs宿主提供了希望。本研究为水生塑料球内的ARGs动态和生态风险提供了新的见解,强调了全面的MP监测举措的重要性。