Li Houyu, Ding Yinuo, Xu Yan, Liu Wei
Agro-Environmental Protection Institute Ministry of Agriculture and Rural Affairs Tianjin China.
Université Claude Bernard Lyon 1, Laboratoire d' Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418 Villeurbanne France.
Imeta. 2025 Jun 14;4(4):e70056. doi: 10.1002/imt2.70056. eCollection 2025 Aug.
Multi-omics approaches revealed how nanoplastics with different surface charges influence antibiotic resistance in K12. Positively charged nanoplastics enhanced antibiotic resistance by upregulating genes and proteins linked to oxidative stress tolerance and efflux pumps, and promoted antibiotic resistance genes transfer via conjugation and transformation. In contrast, negatively charged nanoplastics disrupted biofilm formation and metabolism, potentially reducing antibiotic resistance. These findings highlight the critical role of nanoplastics' surface properties in shaping microbial resistance dynamics and highlight emerging risks posed by nanoplastics to public health through accelerated antibiotic resistance propagation.
多组学方法揭示了具有不同表面电荷的纳米塑料如何影响K12中的抗生素耐药性。带正电荷的纳米塑料通过上调与氧化应激耐受性和外排泵相关的基因和蛋白质来增强抗生素耐药性,并通过接合和转化促进抗生素耐药基因的转移。相比之下,带负电荷的纳米塑料会破坏生物膜的形成和代谢,可能降低抗生素耐药性。这些发现突出了纳米塑料表面性质在塑造微生物耐药动态中的关键作用,并强调了纳米塑料通过加速抗生素耐药性传播对公众健康构成的新风险。