Suppr超能文献

迈向数据驱动的热带森林恢复:揭示土壤深度梯度上养分的空间变化、相互作用和历史管理效应。

Towards data-driven tropical forest restoration: Uncovering spatial variation, interactions and historical management effects on nutrients along soil depth gradients.

机构信息

Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh.

Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh; Arannayk Foundation, 572/K, Wasi Tower, ECB Chattar, Matikata, 1206 Dhaka, Bangladesh.

出版信息

Sci Total Environ. 2024 Dec 1;954:176756. doi: 10.1016/j.scitotenv.2024.176756. Epub 2024 Oct 6.

Abstract

Data scarcity hinders global conservation initiatives, and there is a pressing demand for spatially detailed soil and species data to restore human-altered tropical forests. We, therefore, aimed to generate foundational soil environment and habitat suitability data and high-resolution soil maps to aid restoration efforts in a critical ecosystem of the threatened Indo-Burma Biodiversity Hotspot region, i.e., Tarap Hill Reserve (THR) in Bangladesh. Using multiple soil depths and vegetation data, we answered three major questions. (QI) How do spatial distribution and the relationships between soil physicochemical properties (i.e., pH, sand, silt, and clay percentages, organic carbon, and nutrients - N, P, K, Ca, Mg, Fe, and Zn) vary from surface to deeper soils (top 1 m)? (QII) How do different forest management interventions, i.e., old-growth forests (OGF), mixed plantations (MXP), and mono-specific plantations (MOP), influence soil properties, nutrients, and carbon in different soil depths? (QIII) Which spatial interpolation methods are best suited for making more accurate soil property predictions at different depths? Our analyses reveal decreasing availability of critical nutrients like N, P, Mg, and Fe from surface to subsurface soils, while pH, soil organic carbon, and clay content increased with depth. Several soil properties showed significant interactions, although the strength of the interactions changed from surface to deeper soils. Besides, forest management interventions significantly influenced soil functionality by having higher nutrient availability and soil organic carbon in OGF than MXP and MOP. Predictive performances of the deterministic and geostatistical interpolation methods varied for different soil properties in different soil depths, and soil maps revealed substantial heterogeneity in the distribution of soil properties across space and along depths. This study represents a pioneering step in data-driven tropical forest restoration, and our novel findings and high-resolution soil maps could guide future studies focusing on species habitat preferences, restoration ecology, and spatial conservation planning in the Indo-Burma Biodiversity Hotspot region and elsewhere in the tropics.

摘要

数据稀缺阻碍了全球保护倡议的开展,因此迫切需要详细的土壤和物种数据,以恢复人为干扰的热带森林。因此,我们旨在生成基础土壤环境和栖息地适宜性数据以及高分辨率土壤图,以帮助恢复受到威胁的印度-缅甸生物多样性热点地区的一个关键生态系统,即孟加拉国的 Tarap Hill 保护区 (THR)。我们使用多个土壤深度和植被数据回答了三个主要问题。(QI) 土壤理化性质(即 pH 值、砂、粉砂和粘土百分比、有机碳和养分-N、P、K、Ca、Mg、Fe 和 Zn)的空间分布及其关系如何从表层到深层土壤(1 米深)发生变化?(QII) 不同的森林管理干预措施,即原始森林 (OGF)、混合种植园 (MXP) 和单一树种种植园 (MOP),如何影响不同土壤深度的土壤性质、养分和碳?(QIII) 哪些空间插值方法最适合在不同深度下更准确地预测土壤特性?我们的分析表明,从表层到次表层土壤,关键养分(如 N、P、Mg 和 Fe)的可利用性降低,而 pH 值、土壤有机碳和粘粒含量随深度增加而增加。尽管从表层到深层土壤,相互作用的强度发生了变化,但一些土壤特性表现出显著的相互作用。此外,森林管理干预措施通过在 OGF 中具有更高的养分可用性和土壤有机碳,对土壤功能产生了显著影响,而在 MXP 和 MOP 中则较低。不同土壤深度的不同土壤特性的确定性和地统计学插值方法的预测性能存在差异,土壤图揭示了土壤特性在空间和深度上的分布存在很大的异质性。本研究代表了热带森林恢复数据驱动方法的开创性步骤,我们的新发现和高分辨率土壤图可以指导未来的研究,重点关注物种生境偏好、恢复生态学以及印度-缅甸生物多样性热点地区和其他热带地区的空间保护规划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验