Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17 , Copenhagen 2100, Denmark.
J R Soc Interface. 2024 Oct;21(219):20240232. doi: 10.1098/rsif.2024.0232. Epub 2024 Oct 9.
Biological processes that are able to discriminate between different molecules consume energy and dissipate heat, using a mechanism known as proofreading. In this work, we thoroughly analyse the thermodynamic properties of one of the most important proofreading mechanisms, namely Hopfield's energy-relay proofreading. We discover several trade-off relations and scaling laws between several kinetic and thermodynamic observables. These trade-off relations are obtained both analytically and numerically through Pareto optimal fronts. We show that the scheme is able to operate in three distinct regimes: an energy-relay regime, a mixed relay-Michaelis-Menten (MM) regime and a Michaelis-Menten regime, depending on the kinetic and energetic parameters that tune transitions between states. The mixed regime features a dynamical phase transition in the error-entropy production Pareto trade-off, while the pure energy-relay regime contains a region where this type of proofreading energetically outperforms standard kinetic proofreading.
能够区分不同分子的生物学过程需要消耗能量并散热,这一过程采用了一种被称为“校对”的机制。在这项工作中,我们彻底分析了最重要的校对机制之一——Hopfield 能量中继校对的热力学性质。我们发现了几个动力学和热力学观测值之间的权衡关系和标度律。这些权衡关系是通过 Pareto 最优前沿从理论和数值两个方面得出的。我们表明,该方案能够在三个不同的状态下运行:能量中继状态、混合中继-米氏(MM)状态和米氏状态,这取决于调节状态之间转变的动力学和能量参数。混合状态在错误熵产生 Pareto 权衡中具有动态相变,而纯能量中继状态包含一个区域,在该区域中,这种校对在能量上优于标准的动力学校对。