Mathai Tejas Sudharshan, Lubner Meghan G, Pickhardt Perry J, Summers Ronald M
National Institutes of Health Clinical Center, Building 10 Room 1C224, Bethesda, Maryland 20892-1182, USA (T.S.M., R.M.S.).
University of Wisconsin School of Medicine & Public Health (M.G.L., P.J.P.).
Acad Radiol. 2025 Mar;32(3):1398-1408. doi: 10.1016/j.acra.2024.09.050. Epub 2024 Oct 8.
In the United States, cirrhosis was the 12th leading cause of death in 2016. Despite end-stage cirrhosis being irreversible, earlier stages of hepatic fibrosis can be reversed via early diagnosis and intervention. The objective is to investigate the utility of a fully automated technique to measure liver surface nodularity (LSN) for staging hepatic fibrosis (stages F0-F4).
In this retrospective study, a dataset consisting of patients with multiple etiologies of liver disease collected at Institution-A (METAVIR F0-F4, 2000-2016) was used. The LSN was automatically measured in contrast-enhanced CT volumes and compared against scores from a manual tool. Area under the receiver operating characteristics curve (AUC) was used to distinguish between clinically significant fibrosis (≥ F2), advanced fibrosis (≥F3), and end-stage cirrhosis (F4).
The study sample had 480 patients (304 men, 176 women, mean age, 49±9). Automatically derived LSN scores progressively increased with the fibrosis stage: F0 (1.64 [mean]±1.13 [standard deviation]), F1 (2.16±2.39), F2 (2.17±2.55), F3 (2.23±2.52), and F4 (4.21±2.94). For discriminating significant fibrosis (≥F2), advanced fibrosis (≥F3), and cirrhosis (F4), the automated tool achieved ROC AUCs of 73.9%, 82.5%, and 87.8% respectively. The sensitivity and specificity for significant fibrosis (nodularity threshold 1.51) was 85.2% and 73.3%, advanced fibrosis (nodularity threshold 1.73) was 84.2% and 79.5%, and cirrhosis (nodularity threshold 2.18) was 86.5% and 79.5%. Statistical tests revealed that the automated LSN scores distinguished patients with advanced fibrosis (p<.001) and cirrhosis (p<.001).
The fully automated LSN measurement retained its predictive power for distinguishing between advanced fibrosis and cirrhosis. The clinical impact is that the fully automated LSN measurement may be useful for early interventions and population-based studies. It can automatically predict the fibrosis stage in ∼45 s in comparison to the ∼2 min needed to manually measure the LSN in a CT volume.
在美国,肝硬化是2016年第12大死因。尽管终末期肝硬化不可逆转,但肝纤维化的早期阶段可通过早期诊断和干预得以逆转。目的是研究一种全自动技术测量肝脏表面结节度(LSN)用于肝纤维化分期(F0 - F4期)的效用。
在这项回顾性研究中,使用了在机构A收集的由多种肝病病因患者组成的数据集(METAVIR F0 - F4期,2000 - 2016年)。在增强CT容积中自动测量LSN,并与手动工具得出的评分进行比较。采用受试者操作特征曲线下面积(AUC)来区分临床显著纤维化(≥F2)、进展性纤维化(≥F3)和终末期肝硬化(F4)。
研究样本有480例患者(304例男性,176例女性,平均年龄49±9岁)。自动得出的LSN评分随纤维化阶段逐渐增加:F0期(1.64[均值]±1.13[标准差]),F1期(2.16±2.39),F2期(2.17±2.55),F3期(2.23±2.52),F4期(4.21±2.94)。对于区分显著纤维化(≥F2)、进展性纤维化(≥F3)和肝硬化(F4),该自动工具的ROC AUC分别为73.9%、82.5%和87.8%。显著纤维化(结节度阈值1.51)的敏感性和特异性分别为85.2%和73.3%,进展性纤维化(结节度阈值1.73)为84.2%和79.5%,肝硬化(结节度阈值2.18)为86.5%和79.5%。统计检验表明,自动LSN评分可区分进展性纤维化患者(p<.001)和肝硬化患者(p<.001)。
全自动LSN测量在区分进展性纤维化和肝硬化方面保留了其预测能力。其临床意义在于,全自动LSN测量可能有助于早期干预和基于人群的研究。与在CT容积中手动测量LSN所需的约2分钟相比,它能在约45秒内自动预测纤维化阶段。