Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, 528010, China.
Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
J Cancer Res Clin Oncol. 2024 Oct 9;150(10):450. doi: 10.1007/s00432-024-05986-x.
To develop and evaluate a nomogram that integrates clinical parameters with deep learning radiomics (DLR) extracted from Magnetic Resonance Imaging (MRI) data to enhance the predictive accuracy for preoperative lymph node (LN) metastasis in rectal cancer.
A retrospective analysis was conducted on 356 patients diagnosed with rectal cancer. Of these, 286 patients were allocated to the training set, and 70 patients comprised the external validation cohort. Preprocessed T2-weighted and diffusion-weighted imaging performed preoperatively facilitated the extraction of DLR features. Five machine learning algorithms-k-nearest neighbor, light gradient boosting machine, logistic regression, random forest, and support vector machine-were utilized to develop DLR models. The most effective algorithm was identified and used to establish a clinical DLR (CDLR) nomogram specifically designed to predict LN metastasis in rectal cancer. The performance of the nomogram was evaluated using receiver operating characteristic curve analysis.
The logistic regression classifier demonstrated significant predictive accuracy using the DLR signature, achieving an Area Under the Curve (AUC) of 0.919 in the training cohort and 0.778 in the external validation cohort. The integrated CDLR nomogram exhibited robust predictive performance across both datasets, with AUC values of 0.921 in the training cohort and 0.818 in the external validation cohort. Notably, it outperformed both the clinical model, which had AUC values of 0.770 and 0.723 in the training and external validation cohorts, respectively, and the stand-alone DLR model.
The nomogram derived from multiparametric MRI data, referred to as the CDLR model, demonstrates strong predictive efficacy in forecasting LN metastasis in rectal cancer.
开发并评估一个列线图,该列线图将临床参数与从磁共振成像(MRI)数据中提取的深度学习放射组学(DLR)相结合,以提高直肠癌术前淋巴结(LN)转移的预测准确性。
对 356 例经诊断患有直肠癌的患者进行回顾性分析。其中,286 例患者被分配到训练集,70 例患者构成外部验证队列。术前进行预处理的 T2 加权和弥散加权成像有助于提取 DLR 特征。使用 5 种机器学习算法 - k-最近邻、轻梯度提升机、逻辑回归、随机森林和支持向量机 - 开发 DLR 模型。确定最有效的算法并用于建立专门用于预测直肠癌 LN 转移的临床 DLR(CDLR)列线图。使用接收者操作特征曲线分析评估列线图的性能。
逻辑回归分类器使用 DLR 特征表现出显著的预测准确性,在训练队列中获得 0.919 的曲线下面积(AUC),在外部验证队列中获得 0.778 的 AUC。集成的 CDLR 列线图在两个数据集上均表现出稳健的预测性能,在训练队列中的 AUC 值为 0.921,在外部验证队列中的 AUC 值为 0.818。值得注意的是,它优于临床模型,临床模型在训练和外部验证队列中的 AUC 值分别为 0.770 和 0.723,以及独立的 DLR 模型。
源自多参数 MRI 数据的列线图,称为 CDLR 模型,在预测直肠癌 LN 转移方面具有强大的预测效果。