Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
J Nanobiotechnology. 2024 Oct 8;22(1):611. doi: 10.1186/s12951-024-02840-7.
In diabetic wounds, hyperglycemia-induced cytotoxicity and impaired immune microenvironment plasticity directly hinder the wound healing process. Regulation of the hyperglycemic microenvironment and remodeling of the immune microenvironment are crucial.
Here, we developed a nanozymatic functionalized regenerative microenvironmental regulator (AHAMA/CS-GOx@Zn-POM) for the effective repair of diabetic wounds. This novel construct integrated an aldehyde and methacrylic anhydride-modified hyaluronic acid hydrogel (AHAMA) and chitosan nanoparticles (CS NPs) encapsulating zinc-based polymetallic oxonate nanozyme (Zn-POM) and glucose oxidase (GOx), facilitating a sustained release of release of both enzymes. The GOx catalyzed glucose to gluconic acid and (H₂O₂), thereby alleviating the effects of the hyperglycemic microenvironment on wound healing. Zn-POM exhibited catalase and superoxide dismutase activities to scavenge reactive oxygen species and H₂O₂, a by-product of glucose degradation. Additionally, Zn-POM induced M1 macrophage reprogramming to the M2 phenotype by inhibiting the MAPK/IL-17 signaling diminishing pro-inflammatory cytokines, and upregulating the expression of anti-inflammatory mediators, thus remodeling the immune microenvironment and enhancing angiogenesis and collagen regeneration within wounds. In a rat diabetic wound model, the application of AHAMA/CS-GOx@Zn-POM enhanced neovascularization and collagen deposition, accelerating the wound healing process.
Therefore, the regenerative microenvironment regulator AHAMA/CS-GOx@Zn-POM can achieve the effective conversion of a pathological microenvironment to regenerative microenvironment through integrated control of the hyperglycemic-immune microenvironment, offering a novel strategy for the treatment of diabetic wounds.
在糖尿病伤口中,高血糖诱导的细胞毒性和受损的免疫微环境可塑性直接阻碍了伤口愈合过程。调节高血糖微环境和重塑免疫微环境至关重要。
在这里,我们开发了一种纳米酶功能化的再生微环境调节剂 (AHAMA/CS-GOx@Zn-POM),用于有效修复糖尿病伤口。这种新型构建体集成了醛和甲基丙烯酰基修饰的透明质酸水凝胶 (AHAMA) 和壳聚糖纳米粒子 (CS NPs),封装了锌基多金属氧酸盐纳米酶 (Zn-POM) 和葡萄糖氧化酶 (GOx),促进了两种酶的持续释放。GOx 将葡萄糖催化为葡萄糖酸和 (H₂O₂),从而减轻高血糖微环境对伤口愈合的影响。Zn-POM 表现出过氧化氢酶和超氧化物歧化酶活性,可清除活性氧和 H₂O₂,这是葡萄糖降解的副产物。此外,Zn-POM 通过抑制 MAPK/IL-17 信号通路抑制促炎细胞因子的表达,上调抗炎介质的表达,从而重塑免疫微环境并增强伤口内的血管生成和胶原再生,将 M1 巨噬细胞重编程为 M2 表型。在大鼠糖尿病伤口模型中,应用 AHAMA/CS-GOx@Zn-POM 增强了血管新生和胶原沉积,加速了伤口愈合过程。
因此,再生微环境调节剂 AHAMA/CS-GOx@Zn-POM 可以通过对高血糖-免疫微环境的综合控制,实现对病理性微环境的有效转化为再生微环境,为糖尿病伤口的治疗提供了一种新策略。