Hambrick H Rhodes, Punt Nieko, Pavia Kathryn, Mizuno Tomoyuki, Goldstein Stuart L, Tang Girdwood Sonya
Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
Division of Translational and Clinical Pharmacology, CCHMC, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
J Intensive Care. 2024 Oct 8;12(1):38. doi: 10.1186/s40560-024-00752-0.
Sepsis is a leading cause of acute kidney injury requiring continuous kidney replacement therapy (CKRT) and CKRT can alter drug pharmacokinetics (PK). Cefepime is used commonly in critically ill children and is cleared by CKRT, yet data regarding cefepime PK and pharmacodynamic (PD) target attainment in children receiving CKRT are scarce, so we performed Monte Carlo simulations (MCS) of cefepime dosing strategies in children receiving CKRT.
We developed a CKRT "module" in the precision dosing software Edsim++. The module was added into a pediatric cefepime PK model. 1000-fold MCS were performed using six dosing strategies in patients aged 2-25 years and ≥ 10 kg with differing residual kidney function (estimated glomerular filtration rate of 5 vs 30 mL/min/1.73 m), CKRT prescriptions, (standard-dose total effluent flow of 2500 mL/h/1.73 m vs high-dose of 8000 mL/h/1.73 m), and fluid accumulation (0-30%). Probability of target attainment (PTA) was defined by percentage of patients with free concentrations exceeding bacterial minimum inhibitory concentration (MIC) for 100% of the dosing interval (100% fT > 1xMIC) and 4xMIC using an MIC of 8 mg/L for Pseudomonas aeruginosa.
Assuming standard-dose dialysis and minimal kidney function, > 90% PTA was achieved for 100% fT > 1x MIC with continuous infusions (CI) of 100-150 mg/kg/day (max 4/6 g) and 4-h infusions of 50 mg/kg (max 2 g), but > 90% PTA for 100% fT > 4x MIC was only achieved by 150 mg/kg CI. Decreased PTA was seen with less frequent dosing, shorter infusions, higher-dose CKRT, and higher residual kidney function.
Our new CKRT-module was successfully added to an existing cefepime PK model for MCS in young patients on CKRT. When targeting 100% fT > 4xMIC or using higher-dose CKRT, CI would allow for higher PTA than intermittent dosing.
脓毒症是需要持续肾脏替代治疗(CKRT)的急性肾损伤的主要原因,且CKRT可改变药物的药代动力学(PK)。头孢吡肟常用于危重症儿童,且通过CKRT清除,但关于接受CKRT的儿童头孢吡肟的PK及药效学(PD)目标达成情况的数据较少,因此我们对接受CKRT的儿童头孢吡肟给药策略进行了蒙特卡洛模拟(MCS)。
我们在精准给药软件Edsim++中开发了一个CKRT“模块”。该模块被添加到儿科头孢吡肟PK模型中。对年龄在2至25岁且体重≥10 kg、具有不同残余肾功能(估计肾小球滤过率为5 vs 30 mL/min/1.73 m²)、CKRT处方(标准剂量总流出液流量为2500 mL/h/1.73 m² vs高剂量8000 mL/h/1.73 m²)以及液体蓄积(0至30%)的患者,使用六种给药策略进行了1000次MCS。目标达成概率(PTA)通过游离浓度在给药间隔的100%时间内超过细菌最低抑菌浓度(MIC)(100% fT>1×MIC)以及使用铜绿假单胞菌8 mg/L的MIC时在4×MIC的患者百分比来定义。
假设为标准剂量透析且肾功能最低,持续输注(CI)100 - 150 mg/kg/天(最大4/6 g)以及4小时输注50 mg/kg(最大2 g)时,对于100% fT>1×MIC可实现>90%的PTA,但对于100% fT>4×MIC,仅150 mg/kg CI可实现>90%的PTA。给药频率降低、输注时间缩短、高剂量CKRT以及较高的残余肾功能会导致PTA降低。
我们的新CKRT模块已成功添加到现有的头孢吡肟PK模型中,用于对接受CKRT的年轻患者进行MCS。当目标为100% fT>4×MIC或使用高剂量CKRT时,CI比间歇给药可实现更高的PTA。