Suppr超能文献

用于增强室温钠硫电池循环稳定性的磷氮双掺杂中空多孔碳球

Phosphorus and Nitrogen Dual-Doped Hollow Porous Carbon Spheres toward Enhanced Cycling Stability of Room-Temperature Na-S Batteries.

作者信息

Huang Jianlin, Zhang Yao, Ou Liqi, Mou Jirong

机构信息

Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.

School of Physics and Electronics, Gannan Normal University, Ganzhou 341000, China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 23;16(42):57064-57073. doi: 10.1021/acsami.4c11488. Epub 2024 Oct 8.

Abstract

Development of room-temperature sodium-sulfur (RT Na-S) batteries with satisfactory cycling life and rate capability remains challenging due to the unfavorable electric conductivity from S species, sluggish redox kinetics of S conversion, and serious shuttle effects of sodium polysulfides (NaPSs). To address these issues, a phosphorus and nitrogen dual-doped hollow porous carbon sphere (PN-HPCs) is synthesized as the S hosts, which enhances the electric conductivity, ion diffusion, and conversion of polysulfides. Such a hollow hierarchically porous structure is beneficial to accommodate the volume variations of S species and shorten the ion/electron transfer distances during electrochemical reaction process. As a result, the S@PN-HPCs600 cathode delivers noticeable cycling performance (313 mAh g after 4500 cycles at 5.0 C, and capacity degeneration of only 0.01% per cycle) and rate capability (646.4 mAh g@1.0 and 527.5 mAh g@3.0 C). This work presents an efficient strategy based on structural confinement and dual-heteroatom doping engineering for long-life RT Na-S batteries.

摘要

由于硫物种的电导率不佳、硫转化的氧化还原动力学迟缓以及多硫化钠(NaPSs)严重的穿梭效应,开发具有令人满意的循环寿命和倍率性能的室温钠硫(RT Na-S)电池仍然具有挑战性。为了解决这些问题,合成了一种磷氮双掺杂空心多孔碳球(PN-HPCs)作为硫宿主,它提高了电导率、离子扩散以及多硫化物的转化。这种空心分级多孔结构有利于适应硫物种的体积变化,并缩短电化学反应过程中的离子/电子转移距离。结果,S@PN-HPCs600 正极展现出显著的循环性能(在 5.0 C 下 4500 次循环后为 313 mAh g,且每循环容量衰减仅 0.01%)和倍率性能(在 1.0 C 时为 646.4 mAh g,在 3.0 C 时为 527.5 mAh g)。这项工作提出了一种基于结构限制和双杂原子掺杂工程的高效策略,用于长寿命 RT Na-S 电池。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验