Suppr超能文献

盐单胞菌 153B 的全基因组代谢建模解释了在高盐环境中聚羟基烷酸酯和章鱼胺的生物合成。

Genome-Scale Metabolic Modeling of Halomonas elongata 153B Explains Polyhydroxyalkanoate and Ectoine Biosynthesis in Hypersaline Environments.

机构信息

Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.

Biotechnology and Biosafety Department, Graduate and Natural Applied Science, Eskişehir Osmangazi University, Eskişehir, Turkey.

出版信息

Biotechnol J. 2024 Oct;19(10):e202400267. doi: 10.1002/biot.202400267.

Abstract

Halomonas elongata thrives in hypersaline environments producing polyhydroxyalkanoates (PHAs) and osmoprotectants such as ectoine. Despite its biotechnological importance, several aspects of the dynamics of its metabolism remain elusive. Here, we construct and validate a genome-scale metabolic network model for H. elongata 153B. Then, we investigate the flux distribution dynamics during optimal growth, ectoine, and PHA biosynthesis using statistical methods, and a pipeline based on shadow prices. Lastly, we use optimization algorithms to uncover novel engineering targets to increase PHA production. The resulting model (iEB1239) includes 1534 metabolites, 2314 reactions, and 1239 genes. iEB1239 can reproduce growth on several carbon sources and predict growth on previously unreported ones. It also reproduces biochemical phenotypes related to Oad and Ppc gene functions in ectoine biosynthesis. A flux distribution analysis during optimal ectoine and PHA biosynthesis shows decreased energy production through oxidative phosphorylation. Furthermore, our analysis unveils a diverse spectrum of metabolic alterations that extend beyond mere flux changes to encompass heightened precursor production for ectoine and PHA synthesis. Crucially, these findings capture other metabolic changes linked to adaptation in hypersaline environments. Bottlenecks in the glycolysis and fatty acid metabolism pathways are identified, in addition to PhaC, which has been shown to increase PHA production when overexpressed. Overall, our pipeline demonstrates the potential of genome-scale metabolic models in combination with statistical approaches to obtain insights into the metabolism of H. elongata. Our platform can be exploited for researching environmental adaptation, and for designing and optimizing metabolic engineering strategies for bioproduct synthesis.

摘要

耐盐海洋杆菌在高盐环境中生长旺盛,能产生聚羟基烷酸酯(PHA)和章鱼胺等渗透保护剂。尽管它具有生物技术的重要性,但它的代谢动力学的几个方面仍然难以捉摸。在这里,我们构建并验证了耐盐海洋杆菌 153B 的基因组规模代谢网络模型。然后,我们使用统计方法和基于影子价格的流水线,研究了最佳生长、章鱼胺和 PHA 生物合成过程中的通量分布动态。最后,我们使用优化算法发现提高 PHA 产量的新工程目标。所得模型(iEB1239)包括 1534 种代谢物、2314 种反应和 1239 种基因。iEB1239 可以再现几种碳源的生长,并预测以前未报道过的碳源的生长。它还再现了与章鱼胺生物合成中的 Oad 和 Ppc 基因功能相关的生化表型。最佳章鱼胺和 PHA 生物合成过程中的通量分布分析表明,通过氧化磷酸化产生的能量减少。此外,我们的分析揭示了一系列广泛的代谢变化,不仅包括通量变化,还包括章鱼胺和 PHA 合成所需前体的增加。至关重要的是,这些发现还捕捉到了与高盐环境适应相关的其他代谢变化。除了已经证明过表达可以增加 PHA 产量的 PhaC 外,还确定了糖酵解和脂肪酸代谢途径中的瓶颈。总的来说,我们的流水线展示了基因组规模代谢模型与统计方法相结合获得耐盐海洋杆菌代谢见解的潜力。我们的平台可用于研究环境适应,以及设计和优化生物制品合成的代谢工程策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验