Suppr超能文献

高盐诱导γ-氨基丁酸生物合成的代谢工程改造提高了缺胞外多糖谷氨酸生产突变体的耐盐性。

Metabolic engineering of high-salinity-induced biosynthesis of γ-aminobutyric acid improves salt-stress tolerance in a glutamic acid-overproducing mutant of an ectoine-deficient .

机构信息

Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan.

Institute of Integrated Science and Technology, Nagasaki University, Nagasaki, Japan.

出版信息

Appl Environ Microbiol. 2024 Jan 24;90(1):e0190523. doi: 10.1128/aem.01905-23. Epub 2023 Dec 19.

Abstract

A moderately halophilic eubacterium, , has been used as cell factory to produce fine chemical 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine), which functions as a major osmolyte protecting the cells from high-salinity stress. To explore the possibility of using to biosynthesize other valuable osmolytes, an ectoine-deficient salt-sensitive deletion mutant strain KA1 (Δ), which only grows well in minimal medium containing up to 3% NaCl, was subjected to an adaptive mutagenesis screening in search of mutants with restored salt tolerance. Consequently, we obtained a mutant, which tolerates 6% NaCl in minimal medium by overproducing L-glutamic acid (Glu). However, this Glu-overproducing (GOP) strain has a lower tolerance level than the wild-type , possibly because the acidity of Glu interferes with the pH homeostasis of the cell and hinders its own cellular accumulation. Enzymatic decarboxylation of Glu to γ-aminobutyric acid (GABA) by a Glu decarboxylase (GAD) could restore cellular pH homeostasis; therefore, we introduced an engineered salt-inducible gene, which encodes a wide pH-range GAD mutant, into the genome of the GOP strain. We found that the resulting GOP-Gad strain exhibits higher salt tolerance than the GOP strain by accumulating high concentration of GABA as an osmolyte in the cell (176.94 µmol/g cell dry weight in minimal medium containing 7% NaCl). With OUT30018 genetic background, GOP-Gad strain can utilize biomass-derived carbon and nitrogen compounds as its sole carbon and nitrogen sources, making it a good candidate for the development of GABA-producing cell factories.IMPORTANCEWhile the wild-type moderately halophilic can synthesize ectoine as a high-value osmolyte via the aspartic acid metabolic pathway, a mutant GOP strain identified in this work opens doors for the biosynthesis of alternative valuable osmolytes via glutamic acid metabolic pathway. Further metabolic engineering to install a GAD system into the GOP strain successfully created a GOP-Gad strain, which acquired higher tolerance to salt stress by accumulating GABA as a major osmolyte. With the ability to assimilate biomass-derived carbon and nitrogen sources and thrive in high-salinity environment, the GOP-Gad strain can be used in the development of sustainable GABA-producing cell factories.

摘要

一种中度嗜盐真细菌 ,已被用作细胞工厂来生产精细化学品 1,4,5,6-四氢-2-甲基-4-嘧啶羧酸(ectoine),它作为主要的渗透物保护细胞免受高盐胁迫。为了探索利用 生产其他有价值的渗透物的可能性,我们对一种仅在含有高达 3%NaCl 的最小培养基中才能良好生长的ectoine 缺陷盐敏感 缺失突变体菌株 KA1(Δ)进行了适应性诱变筛选,以寻找恢复耐盐性的突变体。因此,我们获得了一株突变体,该突变体能在最小培养基中耐受 6%NaCl,这是通过过量产生 L-谷氨酸(Glu)实现的。然而,这种 Glu 过量产生(GOP)菌株的耐盐水平低于野生型 ,这可能是因为 Glu 的酸性会干扰细胞的 pH 稳态并阻碍其自身的细胞积累。通过谷氨酸脱羧酶(GAD)将 Glu 酶促脱羧为 γ-氨基丁酸(GABA)可以恢复细胞的 pH 稳态;因此,我们将一个经过工程改造的盐诱导 基因,该基因编码一种宽 pH 范围的 GAD 突变体,引入到 GOP 菌株的基因组中。我们发现,与 GOP 菌株相比,表达 GAD 的 GOP-Gad 菌株通过在细胞内积累高浓度的 GABA 作为渗透物来提高盐耐受性(在含有 7%NaCl 的最小培养基中为 176.94µmol/g 细胞干重)。在 OUT30018 遗传背景下,GOP-Gad 菌株可以利用生物质衍生的碳和氮化合物作为其唯一的碳源和氮源,使其成为生产 GABA 的细胞工厂的良好候选物。

重要性:虽然野生型中度嗜盐 可以通过天冬氨酸代谢途径合成作为高价值渗透物的 ectoine,但在本工作中鉴定的突变体 GOP 菌株为通过谷氨酸代谢途径生物合成替代有价值的渗透物开辟了道路。进一步的代谢工程将 GAD 系统安装到 GOP 菌株中,成功创建了 GOP-Gad 菌株,该菌株通过积累 GABA 作为主要渗透物来获得更高的耐盐性。由于能够同化生物质衍生的碳和氮源并在高盐环境中生长,GOP-Gad 菌株可用于开发可持续生产 GABA 的细胞工厂。

相似文献

3
Enhanced accumulation of γ-aminobutyric acid by deletion of aminotransferase genes involved in γ-aminobutyric acid catabolism in engineered .
Appl Environ Microbiol. 2024 Sep 18;90(9):e0073424. doi: 10.1128/aem.00734-24. Epub 2024 Aug 12.
5
High ectoine production by an engineered Halomonas hydrothermalis Y2 in a reduced salinity medium.
Microb Cell Fact. 2019 Oct 26;18(1):184. doi: 10.1186/s12934-019-1230-x.
6
A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T.
Environ Microbiol. 2011 Aug;13(8):1973-94. doi: 10.1111/j.1462-2920.2010.02336.x. Epub 2010 Sep 16.
8
Physiological metabolic topology analysis of Halomonas elongata DSM 2581 in response to sodium chloride stress.
Biotechnol Bioeng. 2022 Dec;119(12):3509-3525. doi: 10.1002/bit.28222. Epub 2022 Sep 19.
9
Ectoine production from lignocellulosic biomass-derived sugars by engineered Halomonas elongata.
Bioresour Technol. 2013 Aug;142:523-9. doi: 10.1016/j.biortech.2013.05.004. Epub 2013 May 10.
10
Contribution of mechanosensitive channels to osmoadaptation and ectoine excretion in Halomonas elongata.
Extremophiles. 2020 May;24(3):421-432. doi: 10.1007/s00792-020-01168-y. Epub 2020 Apr 7.

引用本文的文献

1
Hypersaline organic wastewater treatment: Biotechnological advances and engineering challenges.
Environ Sci Ecotechnol. 2025 Feb 18;24:100542. doi: 10.1016/j.ese.2025.100542. eCollection 2025 Mar.
3
Enhanced accumulation of γ-aminobutyric acid by deletion of aminotransferase genes involved in γ-aminobutyric acid catabolism in engineered .
Appl Environ Microbiol. 2024 Sep 18;90(9):e0073424. doi: 10.1128/aem.00734-24. Epub 2024 Aug 12.

本文引用的文献

1
Metabolic engineering of : Ectoine secretion is increased by demand and supply driven approaches.
Front Microbiol. 2022 Aug 25;13:968983. doi: 10.3389/fmicb.2022.968983. eCollection 2022.
2
Cell factory for γ-aminobutyric acid (GABA) production using Bifidobacterium adolescentis.
Microb Cell Fact. 2022 Mar 7;21(1):33. doi: 10.1186/s12934-021-01729-6.
3
Halomonas as a chassis.
Essays Biochem. 2021 Jul 26;65(2):393-403. doi: 10.1042/EBC20200159.
6
Osmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology.
PLoS One. 2017 Jan 12;12(1):e0168818. doi: 10.1371/journal.pone.0168818. eCollection 2017.
8
Ectoine production from lignocellulosic biomass-derived sugars by engineered Halomonas elongata.
Bioresour Technol. 2013 Aug;142:523-9. doi: 10.1016/j.biortech.2013.05.004. Epub 2013 May 10.
9
Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness.
J Biosci Bioeng. 2013 Feb;115(2):154-8. doi: 10.1016/j.jbiosc.2012.09.002. Epub 2012 Sep 29.
10
Role of glutamate metabolism in bacterial responses towards acid and other stresses.
J Appl Microbiol. 2013 Jan;114(1):11-24. doi: 10.1111/j.1365-2672.2012.05434.x. Epub 2012 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验