Rahman Md Atiqur, Zairov Rustem, Akylbekov Nurgali, Zhapparbergenov Rakhmetulla, Hasnain S M Mozammil
Department of Mechanical Engineering, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, 522213, India.
Aleksander Butlerov Institute of Chemistry, Kazan Federal University, 1/29 Lobachevskogo Str., Kazan, 420008, Russian Federation.
Heliyon. 2024 Sep 18;10(19):e37981. doi: 10.1016/j.heliyon.2024.e37981. eCollection 2024 Oct 15.
Intermittent renewable energy sources such as solar and wind necessitate energy storage methods like employing phase change materials (PCMs) for latent heat thermal energy storage (LHTES). However, the low thermal conductivity of PCMs limits their thermal response rate. This paper reviews recent progress in active heat transfer augmentation methods for improving LHTES system performance, encompassing mechanical aids, vibrations, jet impingement, injection, and external fields. It compiles findings concerning the optimization of PCM charging and discharging processes. Proposals for future research directions are provided, highlighting the significance of extra energy input for storage. The study highlights how changing the mushy zone constant from 10 to 10 affects a PCM's melt fraction and heat storage. The article also overviews studies using fins and coils to enhance heat transfer in PCM-based LHTES systems. It discusses how geometric and material constraints influence the melting and solidification processes and the heat transfer surface orientation within the storage tank. Various PCMs with different melting temperatures are examined. A broad range of test cases was examined to determine how geometry and orientation-dependent convection affect the phase-changing process. This overview of heat transfer principles offers guidelines for system designers to optimize the geometry of heat transfer fluid (HTF) flow paths and the confinement of PCM to enhance heat transfer efficiency and overall system performance. The results also indicate research gaps for certain PCM melting temperature ranges. Few experimental studies exist for melting temperatures above 60 °C; most focus only on melting rather than solidification. More standardized studies using non-dimensional parameters for coil geometries are advocated.
太阳能和风能等间歇性可再生能源需要能量存储方法,例如采用相变材料(PCM)进行潜热热能存储(LHTES)。然而,PCM的低导热率限制了它们的热响应速率。本文综述了用于提高LHTES系统性能的主动强化传热方法的最新进展,包括机械辅助、振动、射流冲击、注入和外部场。它汇总了关于PCM充放电过程优化的研究结果。提供了未来研究方向的建议,强调了额外能量输入用于存储的重要性。该研究突出了将糊状区常数从10更改为10如何影响PCM的熔化分数和蓄热。文章还概述了使用翅片和盘管来增强基于PCM的LHTES系统中传热的研究。它讨论了几何和材料限制如何影响熔化和凝固过程以及储罐内热传递表面的方向。研究了具有不同熔化温度的各种PCM。研究了广泛的测试案例,以确定几何形状和方向相关的对流如何影响相变过程。这种传热原理概述为系统设计师提供了指导方针,以优化传热流体(HTF)流动路径的几何形状以及PCM的封装,以提高传热效率和整体系统性能。结果还指出了某些PCM熔化温度范围的研究差距。对于高于60°C的熔化温度,很少有实验研究;大多数研究仅关注熔化而非凝固。提倡使用无量纲参数对盘管几何形状进行更多标准化研究。