Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
Anal Chem. 2024 Oct 22;96(42):16825-16833. doi: 10.1021/acs.analchem.4c03550. Epub 2024 Oct 9.
Hydrogen peroxide (HO) levels play a vital role in redox regulation and maintaining the physiological balance of living cells, especially in cell mechanotransduction. Despite the achievements on strain-induced cellular HO monitoring, the applied voltage for HO electrooxidation possibly gave rise to an abnormal expression and inadequate accuracy, which was still an inescapable concern. Hence, we decorated an interlaced CuO@TiO nanowires (NWs) semiconductor meshwork onto a polydimethylsiloxane film-supported gold nanotubes substrate (Au NTs/PDMS) to construct a flexible photoelectrochemical (PEC) sensing platform. Under white light irradiation, CuO@TiO NWs synergistically exhibited great stretchability and the PEC platform enabled stable photocurrent responses from the reduction of HO even during mechanical deformation. Moreover, the admirable biocompatibility and an almost negligible open circuit voltage of +0.18 V for the CuO@TiO NWs/Au NTs/PDMS sensor guaranteed human umbilical vein endothelial cells (HUVECs) adhesion tightly thereon even under continuous illumination for 30 min. Finally, the as-proposed stretchable PEC sensor achieved sensitive and true-to-life monitoring of transient HO release during HUVECs deformation, in which HO release was positively correlated to mechanical strains. This investigation opens a new shade path on in situ cellular sensing and meanwhile greatly expands the application mode of the PEC approach.
过氧化氢 (HO) 水平在氧化还原调节和维持活细胞的生理平衡中起着至关重要的作用,特别是在细胞机械转导中。尽管在应变诱导的细胞 HO 监测方面取得了成就,但 HO 电氧化应用的电压可能导致异常表达和不充分的准确性,这仍然是一个不可避免的关注点。因此,我们将交错的 CuO@TiO 纳米线 (NWs) 半导体网格装饰在聚二甲基硅氧烷 (PDMS) 膜支撑的金纳米管基底 (Au NTs/PDMS) 上,构建了一个灵活的光电化学 (PEC) 传感平台。在白光照射下,CuO@TiO NWs 协同表现出出色的拉伸性,PEC 平台即使在机械变形过程中也能实现 HO 还原的稳定光电流响应。此外,CuO@TiO NWs/Au NTs/PDMS 传感器具有令人钦佩的生物相容性和几乎可以忽略不计的开路电压为 +0.18 V,可确保人脐静脉内皮细胞 (HUVECs) 紧密附着在其上,即使在连续照明 30 分钟的情况下也是如此。最后,所提出的可拉伸 PEC 传感器实现了对 HUVECs 变形过程中瞬态 HO 释放的敏感和真实监测,其中 HO 释放与机械应变呈正相关。这项研究为原位细胞传感开辟了一条新途径,同时极大地扩展了 PEC 方法的应用模式。