Suppr超能文献

使用深度学习自动定量HER2扩增水平

Automated Quantification of HER2 Amplification Levels Using Deep Learning.

作者信息

Wang Ching-Wei, Chu Kai-Lin, Su Ting-Sheng, Liu Keng-Wei, Lin Yi-Jia, Chao Tai-Kuang

出版信息

IEEE J Biomed Health Inform. 2025 Jan;29(1):333-344. doi: 10.1109/JBHI.2024.3476554. Epub 2025 Jan 7.

Abstract

HER2 assessment is necessary for patient selection in anti-HER2 targeted treatment. However, manual assessment of HER2 amplification is time-costly, labor-intensive, highly subjective and error-prone. Challenges in HER2 analysis in fluorescence in situ hybridization (FISH) and dual in situ hybridization (DISH) images include unclear and blurry cell boundaries, large variations in cell shapes and signals, overlapping and clustered cells and sparse label issues with manual annotations only on cells with high confidences, producing subjective assessment scores according to the individual choices on cell selection. To address the above-mentioned issues, we have developed a soft-sampling cascade deep learning model and a signal detection model in quantifying CEN17 and HER2 of cells to assist assessment of HER2 amplification status for patient selection of HER2 targeting therapy to breast cancer. In evaluation with two different kinds of clinical datasets, including a FISH data set and a DISH data set, the proposed method achieves high accuracy, recall and F1-score for both datasets in instance segmentation of HER2 related cells that must contain both CEN17 and HER2 signals. Moreover, the proposed method is demonstrated to significantly outperform seven state of the art recently published deep learning methods, including contour proposal network (CPN), soft label-based FCN (SL-FCN), modified fully convolutional network (M-FCN), bilayer convolutional network (BCNet), SOLOv2, Cascade R-CNN and DeepLabv3+ with three different backbones (p 0.01). Clinically, anti-HER2 therapy can also be applied to gastric cancer patients. We applied the developed model to assist in HER2 DISH amplification assessment for gastric cancer patients, and it also showed promising predictive results (accuracy 97.67 1.46%, precision 96.15 5.82%, respectively).

摘要

在抗HER2靶向治疗中,HER2评估对于患者选择至关重要。然而,手动评估HER2扩增既耗时又费力,主观性强且容易出错。荧光原位杂交(FISH)和双原位杂交(DISH)图像中HER2分析面临的挑战包括细胞边界不清晰和模糊、细胞形状和信号差异大、细胞重叠和聚集以及仅对高置信度细胞进行手动注释时的稀疏标记问题,根据细胞选择的个人选择产生主观评估分数。为了解决上述问题,我们开发了一种软采样级联深度学习模型和一种信号检测模型,用于量化细胞的CEN17和HER2,以协助评估HER2扩增状态,为乳腺癌患者选择HER2靶向治疗。在使用两种不同的临床数据集进行评估时,包括一个FISH数据集和一个DISH数据集,所提出的方法在必须同时包含CEN17和HER2信号的HER2相关细胞的实例分割中,对两个数据集都实现了高精度、召回率和F1分数。此外,所提出的方法被证明明显优于最近发表的七种先进深度学习方法,包括轮廓提议网络(CPN)、基于软标签的全卷积网络(SL-FCN)、改进的全卷积网络(M-FCN)、双层卷积网络(BCNet)、SOLOv2、级联R-CNN和具有三种不同骨干网络的DeepLabv3+(p<0.01)。临床上,抗HER2治疗也可应用于胃癌患者。我们将开发的模型应用于协助胃癌患者的HER2 DISH扩增评估,其也显示出有前景的预测结果(准确率分别为97.67±1.46%、精确率为96.15±5.82%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验