Suppr超能文献

第一印象很重要:治疗师对患者动机和治疗联盟的印象可预测心理治疗的脱落率。

First impressions count: Therapists' impression on patients' motivation and helping alliance predicts psychotherapy dropout.

作者信息

Jankowsky Kristin, Zimmermann Johannes, Jaeger Ulrich, Mestel Robert, Schroeders Ulrich

机构信息

Department of Psychology, University of Kassel, Kassel, Germany.

Asklepios Clinic Tiefenbrunn, Rosdorf, Germany.

出版信息

Psychother Res. 2024 Oct 9:1-13. doi: 10.1080/10503307.2024.2411985.

Abstract

OBJECTIVE

With meta-analytically estimated rates of about 25%, dropout in psychotherapies is a major concern for individuals, clinicians, and the healthcare system at large. To be able to counteract dropout in psychotherapy, accurate insights about its predictors are needed.

METHOD

We compared logistic regression models with two machine learning algorithms (elastic net regressions and gradient boosting machines) in the prediction of therapy dropout in two large inpatient samples ( = 1,691 and  = 12,473) using baseline and initial process variables reported by patients and therapists.

RESULTS

Predictive accuracies of the two machine learning algorithms were similar and higher than for logistic regressions: Therapy dropout could be predicted with an AUC of .73 and .83 for Sample 1 and 2, respectively. The initial evaluation of patients' motivation and the therapeutic alliance rated by the respective therapist were the most important predictors of dropout.

CONCLUSIONS

Therapy dropout in naturalistic inpatient settings can be predicted to a considerable degree by using baseline indicators and therapists' first impressions. Feature selection via regularization leads to higher predictive performances whereas non-linear or interaction effects are dispensable. The most promising point of intervention to reduce therapy dropouts seems to be patients' motivation and the therapeutic alliance.

摘要

目的

心理治疗中的脱落率经荟萃分析估计约为25%,这是患者、临床医生及整个医疗系统主要关注的问题。为了能够应对心理治疗中的脱落问题,需要对其预测因素有准确的认识。

方法

我们使用患者和治疗师报告的基线及初始过程变量,在两个大型住院样本(n = 1691和n = 12473)中,比较了逻辑回归模型与两种机器学习算法(弹性网络回归和梯度提升机)对治疗脱落的预测情况。

结果

两种机器学习算法的预测准确率相似且高于逻辑回归:样本1和样本2预测治疗脱落的曲线下面积(AUC)分别为0.73和0.83。患者动机的初始评估以及相应治疗师评定的治疗联盟是脱落的最重要预测因素。

结论

通过使用基线指标和治疗师的第一印象,可以在相当程度上预测自然主义住院环境中的治疗脱落。通过正则化进行特征选择可带来更高的预测性能,而非线性或交互效应则并非必需。减少治疗脱落最有前景的干预点似乎是患者的动机和治疗联盟。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验