The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai, 200092, China.
J Environ Manage. 2024 Nov;370:122742. doi: 10.1016/j.jenvman.2024.122742. Epub 2024 Oct 9.
Sorting out plastic waste (PW) from municipal solid waste (MSW) by material type is crucial for reutilization and pollution reduction. However, current automatic separation methods are costly and inefficient, necessitating an advanced sorting process to ensure high feedstock purity. This study introduces a Swin Transformer-based model for effectively detecting PW in real-world MSW streams, leveraging both morphological and material properties. And, a dataset comprising 3560 optical images and infrared spectra data was created to support this task. This vision-based system can localize and classify PW into five categories: polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polystyrene (PS). Performance evaluations reveal an accuracy rate of 99.75% and a mean Average Precision (mAP) exceeding 91%. Compared to popular convolutional neural network (CNN)-based models, this well-trained Swin Transformer-based model offers enhanced convenience and performance in five-category PW detection task, maintaining a mAP over 80% in the real-life deployment. The model's effectiveness is further supported by visualization of detection results on MSW streams and principal component analysis of classification scores. These results demonstrate the system's significant effectiveness in both lab-scale and real-life conditions, aligning with global regulations and strategies that promote innovative technologies for plastic recycling, thereby contributing to the development of a sustainable circular economy.
对来自城市固体废物(MSW)的塑料废物(PW)进行物质类型分类,对于再利用和减少污染至关重要。然而,当前的自动分离方法成本高且效率低,需要先进的分类过程来确保高原料纯度。本研究引入了一种基于 Swin Transformer 的模型,用于有效地从现实世界的 MSW 流中检测 PW,利用形态和材料特性。并且,创建了一个包含 3560 张光学图像和红外光谱数据的数据集来支持这项任务。这种基于视觉的系统可以将 PW 定位并分类为五个类别:聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)、聚氯乙烯(PVC)和聚苯乙烯(PS)。性能评估显示准确率为 99.75%,平均精度(mAP)超过 91%。与流行的基于卷积神经网络(CNN)的模型相比,这种经过良好训练的基于 Swin Transformer 的模型在五种类别 PW 检测任务中提供了增强的便利性和性能,在现实生活中的部署中保持了超过 80%的 mAP。通过在 MSW 流上显示检测结果和分类得分的主成分分析,进一步证明了该模型的有效性。这些结果表明,该系统在实验室规模和现实生活条件下都具有显著的有效性,符合促进塑料回收创新技术的全球法规和战略,从而为可持续循环经济的发展做出贡献。