Suppr超能文献

通过可解释的机器学习方法对基因表达和靶向微小RNA进行综合分析,以解释口腔和食管鳞状细胞癌之间的相互作用。

Integrated analysis of gene expressions and targeted mirnas for explaining crosstalk between oral and esophageal squamous cell carcinomas through an interpretable machine learning approach.

作者信息

Yadav Khushi, Hasija Yasha

机构信息

Department of Biotechnology, Delhi Technological University (DTU), Delhi, 110042, India.

出版信息

Med Biol Eng Comput. 2025 Feb;63(2):483-495. doi: 10.1007/s11517-024-03210-z. Epub 2024 Oct 10.

Abstract

This study explores the bidirectional relation of esophageal squamous cell carcinoma (ESCC) and oral squamous cell carcinoma (OSCC), examining shared risk factors and underlying molecular mechanisms. By employing random forest (RF) classifier, enhanced with interpretable machine learning (IML) through SHapley Additive exPlanations (SHAP), we analyzed gene expression from two GEO datasets (GSE30784 and GSE44021). The GSE30784 dataset comprises 167 OSCC samples and 45 control group, whereas the GSE44021 dataset encompasses 113 ESCC samples and 113 control group. Our analysis led to identification of 20 key genes, such as XBP1, VGLL1, and RAD1, which are significantly associated with development of ESCC and OSCC. Further investigations were conducted using tools like NetworkAnalyst 3.0, Single Cell Portal, and miRNET 2.0, which highlighted complex interactions between these genes and specific miRNA targets including hsa-mir-124-3p and hsa-mir-1-3p. Our model achieved high precision in identifying genes linked to crucial processes like programmed cell death and cancer pathways, suggesting new avenues for diagnosis and treatment. This study confirms the bidirectional relationship between OSCC and ESCC, laying groundwork for targeted therapeutic approaches. This study helps to identify shared biological pathways and genetic factors of these conditions for designing personalized medicine strategies and to improve disease management.

摘要

本研究探讨食管鳞状细胞癌(ESCC)与口腔鳞状细胞癌(OSCC)的双向关系,研究共同的风险因素和潜在的分子机制。通过使用随机森林(RF)分类器,并通过SHapley加法解释(SHAP)增强可解释机器学习(IML),我们分析了两个GEO数据集(GSE30784和GSE44021)的基因表达。GSE30784数据集包含167个OSCC样本和45个对照组,而GSE44021数据集包含113个ESCC样本和113个对照组。我们的分析确定了20个关键基因,如XBP1、VGLL1和RAD1,它们与ESCC和OSCC的发展显著相关。使用NetworkAnalyst 3.0、单细胞门户和miRNET 2.0等工具进行了进一步研究,这些工具突出了这些基因与特定miRNA靶点(包括hsa-mir-124-3p和hsa-mir-1-3p)之间的复杂相互作用。我们的模型在识别与程序性细胞死亡和癌症途径等关键过程相关的基因方面具有高精度,为诊断和治疗提供了新途径。本研究证实了OSCC和ESCC之间的双向关系,为靶向治疗方法奠定了基础。本研究有助于识别这些疾病的共同生物学途径和遗传因素,以设计个性化医疗策略并改善疾病管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验