Choi Jonghyeon, Park Jungmin, Noh Seunghyeon, Lee Jaebyeong, Lee Seunghyun, Choe Daeseong, Jung Hyeonjung, Jo Junhyeon, Oh Inseon, Han Juwon, Kwon Soon-Yong, Ahn Chang Won, Min Byoung-Chul, Jin Hosub, Kim Choong H, Kim Kyoung-Whan, Yoo Jung-Woo
Department of Materials and Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
Nat Commun. 2024 Oct 9;15(1):8746. doi: 10.1038/s41467-024-52835-z.
Current silicon-based CMOS devices face physical limitations in downscaling size and power loss, restricting their capability to meet the demands for data storage and information processing of emerging technologies. One possible alternative is to encode the information in a non-volatile magnetic state and manipulate this spin state electronically, as in spintronics. However, current spintronic devices rely on the current-driven control of magnetization, which involves Joule heating and power dissipation. This limitation has motivated intense research into the voltage-driven manipulation of spin signals to achieve energy-efficient device operation. Here, we show non-volatile control of spin-charge conversion at room temperature in graphene-based heterostructures through Fermi level tuning. We use a polymeric ferroelectric film to induce non-volatile charging in graphene. To demonstrate the switching of spin-to-charge conversion we perform ferromagnetic resonance and inverse Edelstein effect experiments. The sign change of output voltage is derived by the change of carrier type, which can be achieved solely by a voltage pulse. Our results provide an alternative approach for the electric-field control of spin-charge conversion, which constitutes a building block for the next generation of spin-orbitronic memory and logic devices.
当前基于硅的互补金属氧化物半导体(CMOS)器件在尺寸缩小和功率损耗方面面临物理限制,这限制了它们满足新兴技术对数据存储和信息处理需求的能力。一种可能的替代方案是像在自旋电子学中那样,将信息编码为非易失性磁状态并通过电子方式操纵这种自旋状态。然而,当前的自旋电子器件依赖于电流驱动的磁化控制,这涉及焦耳热和功率耗散。这一限制促使人们对自旋信号的电压驱动操纵进行深入研究,以实现节能的器件运行。在此,我们展示了通过费米能级调谐在室温下对基于石墨烯的异质结构中的自旋 - 电荷转换进行非易失性控制。我们使用聚合物铁电薄膜在石墨烯中诱导非易失性充电。为了证明自旋 - 电荷转换的切换,我们进行了铁磁共振和逆埃德尔斯坦效应实验。输出电压的符号变化由载流子类型的变化得出,这仅通过电压脉冲即可实现。我们的结果为自旋 - 电荷转换的电场控制提供了一种替代方法,这构成了下一代自旋轨道电子存储器和逻辑器件的一个组成部分。