Suppr超能文献

基于多窗口和特征粒度的小样本学习对结核性脑膜炎的早期筛查。

Early screening of miliary tuberculosis with tuberculous meningitis based on few-shot learning with multiple windows and feature granularities.

机构信息

College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China.

Provincial Key Laboratory for Information Technology of Wisdom Mining of Shandong Province, Shandong University of Science and Technology, Qingdao, Shandong, China.

出版信息

Sci Rep. 2024 Oct 9;14(1):23620. doi: 10.1038/s41598-024-75253-z.

Abstract

Tuberculous meningitis (TBM) is a fatal tuberculosis caused by a large number of Mycobacterium tuberculosis (M. tuberculosis) spread by blood flow, with a case fatality rate of more than 50%. It is one of the most serious complications of miliary tuberculosis (MT), whose incidence is closely related to MT. If doctors can provide early diagnosis and active treatment for TBM, the case fatality rate will be significantly reduced. At present, there is a lack of methods to predict the progression of MT to TBM in clinic. To explore whether MT cases will experience TBM, we propose an early screening model of miliary tuberculosis with tuberculous meningitis (MT-TBM) based on few-shot learning with multiple windows and feature granularities (MWFG). This model aims to screen potential TBM cases through chest computerized tomography (CT) images of MT cases. Chest CT is a routine examination for MT cases. The MWFG module can extract more comprehensive features from a set of CT images of each MT case. The softmax classifier with adaptive regularization is trained on the cooperation of support set and query set, which can effectively prevent overfitting. Experiments on a dataset of 40 MT cases with chest CT images established by the medical records demonstrate that our proposed model achieves state-of-the-art performance in the early screening of MT-TBM. It can establish the connection between MT and MT-TBM through chest CT images of MT cases. The early screening model of MT-TBM based on few-shot learning with MWFG fills the research gap in computer-aided predicting TBM and has certain clinical effects. This research can provide some reference for clinicians in early diagnosis of MT-TBM and help clinicians in the early prevention and treatment of TBM for MT patients.

摘要

结核性脑膜炎(TBM)是一种致命的结核病,由大量通过血流传播的结核分枝杆菌(M. tuberculosis)引起,病死率超过 50%。它是血行播散性肺结核(MT)最严重的并发症之一,其发病率与 MT 密切相关。如果医生能够对 TBM 提供早期诊断和积极治疗,病死率将显著降低。目前,临床上缺乏预测 MT 进展为 TBM 的方法。为了探讨 MT 患者是否会发生 TBM,我们提出了一种基于多窗口多粒度(MWFG)少样本学习的血行播散性肺结核伴结核性脑膜炎(MT-TBM)早期筛查模型。该模型旨在通过 MT 患者的胸部计算机断层扫描(CT)图像筛选出潜在的 TBM 病例。胸部 CT 是 MT 患者的常规检查。MWFG 模块可以从每个 MT 病例的一组 CT 图像中提取更全面的特征。带有自适应正则化的 softmax 分类器在支持集和查询集的协作下进行训练,可以有效防止过拟合。在由病历建立的 40 例 MT 患者的胸部 CT 图像数据集上的实验表明,我们提出的模型在 MT-TBM 的早期筛查中达到了最先进的性能。它可以通过 MT 病例的胸部 CT 图像建立 MT 与 MT-TBM 之间的联系。基于 MWFG 的少样本学习 MT-TBM 早期筛查模型填补了计算机辅助预测 TBM 的研究空白,具有一定的临床效果。这项研究可为 MT-TBM 的早期诊断提供一些参考,有助于临床医生对 MT 患者的 TBM 进行早期预防和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/481e/11464817/908f258094c6/41598_2024_75253_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验