Suppr超能文献

基于(p,q,r)-球形模糊Frank聚合算子的MCGDM方法:在可再生能源分类中的应用

MCGDM approach based on (p, q, r)-spherical fuzzy Frank aggregation operators: applications in the categorization of renewable energy sources.

作者信息

Alballa Tmader, Rahim Muhammad, Alburaikan Alhanouf, Almutairi A, Khalifa Hamiden Abd El-Wahed

机构信息

Department of Mathematics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

Department of Mathematics and Statistics, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan.

出版信息

Sci Rep. 2024 Oct 9;14(1):23576. doi: 10.1038/s41598-024-74591-2.

Abstract

The growing demand for energy, driven by population growth and technological advancements, has made ensuring a sufficient and sustainable energy supply a critical challenge for humanity. Renewable energy sources, such as biomass, solar, wind, and hydro, are inexhaustible and environmentally friendly, offering a viable solution to both the energy crisis and the fight against global warming. However, selecting the optimal renewable energy source remains a complex decision-making problem due to the varying characteristics and impacts of these sources. Motivated by the need for more accurate and nuanced decision-making tools in this domain, this paper introduces a novel multicriteria group decision-making (MCGDM) approach based on [Formula: see text]spherical fuzzy Frank aggregation operators. By integrating Frank t-norm with [Formula: see text]spherical fuzzy sets, we develop aggregation operators (AOs) that effectively manage membership, neutral, and non-membership degrees through parameters [Formula: see text], [Formula: see text], and [Formula: see text]. These AOs provide a more refined framework for decision-making, leading to improved outcomes. We apply this approach to evaluate and identify the superior and optimal renewable energy source using artificial data, demonstrating the advantages of the proposed operators compared to existing methods. This work contributes to the field by offering a robust tool for addressing the energy crisis and advancing sustainable energy solutions.

摘要

受人口增长和技术进步推动,对能源的需求不断增加,这使得确保充足且可持续的能源供应成为人类面临的一项重大挑战。生物质能、太阳能、风能和水能等可再生能源取之不尽且环境友好,为应对能源危机和对抗全球变暖提供了可行的解决方案。然而,由于这些能源的特性和影响各不相同,选择最优的可再生能源仍然是一个复杂的决策问题。鉴于该领域需要更准确、更细致的决策工具,本文介绍了一种基于[公式:见正文]球形模糊Frank聚合算子的新型多准则群体决策(MCGDM)方法。通过将Frank三角模与[公式:见正文]球形模糊集相结合,我们开发了聚合算子(AO),通过参数[公式:见正文]、[公式:见正文]和[公式:见正文]有效地管理隶属度、中立度和非隶属度。这些AO为决策提供了一个更精细的框架,从而带来更好的结果。我们应用此方法使用人工数据评估并确定最优的可再生能源,展示了所提出的算子相较于现有方法的优势。这项工作通过提供一个用于应对能源危机和推进可持续能源解决方案的强大工具,为该领域做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858d/11464515/04e570e3ea48/41598_2024_74591_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验