Suppr超能文献

PQSF:后量子安全的隐私保护联邦学习

PQSF: post-quantum secure privacy-preserving federated learning.

作者信息

Zhang Xia, Deng Haitao, Wu Rui, Ren Jingjing, Ren Yongjun

机构信息

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

School of Computer Science, School of Cyber Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.

出版信息

Sci Rep. 2024 Oct 9;14(1):23553. doi: 10.1038/s41598-024-74377-6.

Abstract

In federated learning, secret sharing is a key technology to maintain the privacy of participants' local models. Moreover, with the rapid development of quantum computers, existing federated learning privacy protection schemes based on secret sharing will no longer be able to guarantee the data security of participants in the post-quantum era. In addition, existing privacy protection methods have the problem of high communication and computational overhead. Although the multi-stage secret sharing scheme proposed by Pilaram et al. is one of the effective solutions to the above problems, existing studies have proven the privacy leakage risk of this scheme. This paper firstly designs a new lattice-based multi-stage secret sharing scheme Improved-Pilaram to solve the security problem, which allows participants to use public vectors to reconstruct different secret values without changing the secret sharing. Based on Improved-Pilaram, this article proposes a post-quantum secure federated learning scheme PQSF. PQSF uses double masking technology to encrypt model parameters and achieves mask reconstruction through secret sharing. Since Improved-Pilaram is multi-stage, participants do not need to update their local secret shares frequently during training. Analysis and experimental results show that the PQSF proposed in this paper reduces the communication complexity between participants and reduces the computational overhead by about 20% compared with existing solutions.

摘要

在联邦学习中,秘密共享是维护参与者本地模型隐私的关键技术。此外,随着量子计算机的快速发展,现有的基于秘密共享的联邦学习隐私保护方案将无法在量子时代后保证参与者的数据安全。此外,现有的隐私保护方法存在通信和计算开销高的问题。尽管Pilaram等人提出的多阶段秘密共享方案是解决上述问题的有效方案之一,但现有研究已经证明了该方案存在隐私泄露风险。本文首先设计了一种新的基于格的多阶段秘密共享方案Improved-Pilaram来解决安全问题,该方案允许参与者在不改变秘密共享的情况下使用公共向量重建不同的秘密值。基于Improved-Pilaram,本文提出了一种后量子安全的联邦学习方案PQSF。PQSF使用双重掩码技术对模型参数进行加密,并通过秘密共享实现掩码重建。由于Improved-Pilaram是多阶段的,参与者在训练过程中不需要频繁更新其本地秘密份额。分析和实验结果表明,本文提出的PQSF降低了参与者之间的通信复杂度,与现有解决方案相比,计算开销降低了约20%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d93/11464711/1bec593eb20e/41598_2024_74377_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验