Han Dong, Ding Honghe, Xiong Juanjuan, Qin Tianchen, Cheng Xingwang, Hu Jun, Xu Qian, Zhu Junfa
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China.
Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China.
ACS Nano. 2024 Oct 22;18(42):28946-28955. doi: 10.1021/acsnano.4c09375. Epub 2024 Oct 9.
The Ullmann coupling of aryl halides is a powerful method in the on-surface synthesis of functional materials. Understanding its basic aspects and influencing factors can aid in the use of this tool for the fabrication of intriguing structures. In this study, we unveil (1) the origin of the shift in the elemental binding energy (BE) and (2) the functions of atomic hydrogen (AH) in a typical Ullmann coupling system using combined spectroscopy and microscopy techniques. During debromination of the aryl halide precursor, the work function (WF) alteration is correlated with the surface Br amount. The WF change instead of C-Ag formation is proposed to play a dominant role in the shift of the molecular C 1s BE. AH dosing onto organometallic chains leads to chain decomposition and surface Br removal. In contrast, AH dosing onto covalent poly(phenylene) (PPP) chains results in superhydrogenation in addition to Br removal. The C 1s BE shift is attributed to both WF change and superhydrogenation effects. Thermal annealing restores the PPP chains by eliminating superhydrogenation, which causes the C 1s BE to shift to a high BE. This study provides deep insights into the mechanisms of Ullmann coupling on surfaces, highlighting the significant role of WF alterations and AH treatments in these processes.
芳基卤化物的乌尔曼偶联是功能材料表面合成中的一种强大方法。了解其基本方面和影响因素有助于将该工具用于制造有趣的结构。在本研究中,我们使用光谱和显微镜技术相结合的方法揭示了(1)元素结合能(BE)变化的起源以及(2)典型乌尔曼偶联系统中原子氢(AH)的作用。在芳基卤化物前驱体的脱溴过程中,功函数(WF)的变化与表面溴含量相关。我们提出,WF的变化而非C-Ag的形成在分子C 1s BE的变化中起主导作用。向有机金属链上添加AH会导致链分解和表面溴去除。相比之下,向共价聚亚苯基(PPP)链上添加AH除了能去除溴之外,还会导致过度氢化。C 1s BE的变化归因于WF变化和过度氢化效应。热退火通过消除过度氢化来恢复PPP链,这会使C 1s BE向高结合能方向移动。本研究深入洞察了表面乌尔曼偶联的机制,突出了WF变化和AH处理在这些过程中的重要作用。