School of Energy and Power Engineering, Jiangsu University, Zhenjiang, China.
Agricultural Engineering Research Institute, Agricultural Research Center, Dokki, Giza, Egypt.
J Food Sci. 2024 Nov;89(11):7693-7712. doi: 10.1111/1750-3841.17373. Epub 2024 Oct 9.
Effective drying methods are a highly suitable solution for ensuring stable food supply chains, reducing postharvest agricultural losses, and preventing the spoilage of perishable fruits and vegetables. Moreover, machine learning techniques are innovative and dependable, especially in addressing food spoilage and optimizing drying processes. This study utilized a continuous infrared (IR) hot air dryer to dry garlic (Allium sativum L.) slices. The experiments were conducted at different levels of IR power, air velocities (V), and temperature (T). The relationships between the input process parameters (IR, T, and V) and response parameters, including effective moisture diffusivity (D), drying time, and physicochemical properties of the dried slices (rehydration ratio [RR], total color change, flavor strength, and allicin content in the garlic), were modeled using an artificial neural network (ANN). Our findings showed that the maximum D of 6.8 × 10 m/s and minimum drying time of 225 min were achieved with an IR of 3000 W/m, an air velocity of 0.7 m/s, and a temperature of 60°C. The total color change and RR values increased with IR and higher air temperature but declined with higher air velocity. Furthermore, the garlic's flavor strength and allicin content levels decreased as the IR and air temperature increased. The results demonstrated a significant influence of the independent parameters on the response parameters (p < 0.01). Interestingly, the ANN predictions closely matched the test data sets, providing valuable insights for understanding and controlling the factors affecting drying behaviors.
有效的干燥方法是确保稳定的食品供应链、减少农产品产后损失和防止易腐水果和蔬菜变质的高度合适的解决方案。此外,机器学习技术具有创新性和可靠性,特别是在解决食品变质和优化干燥过程方面。本研究使用连续式红外(IR)热空气干燥机干燥大蒜(Allium sativum L.)片。实验在不同的 IR 功率、空气速度(V)和温度(T)水平下进行。利用人工神经网络(ANN)对输入过程参数(IR、T 和 V)与响应参数(包括有效水分扩散系数(D)、干燥时间以及干燥片的物理化学性质(复水比[RR]、总色差、风味强度和大蒜中的蒜素含量)之间的关系进行建模。研究结果表明,在 IR 为 3000 W/m、空气速度为 0.7 m/s、温度为 60°C 的条件下,D 的最大值为 6.8×10m/s,干燥时间最短为 225 min。总色差和 RR 值随 IR 和较高的空气温度增加而增加,但随较高的空气速度降低而降低。此外,大蒜的风味强度和蒜素含量水平随 IR 和空气温度的升高而降低。结果表明,独立参数对响应参数有显著影响(p<0.01)。有趣的是,ANN 预测值与测试数据集非常吻合,为理解和控制影响干燥行为的因素提供了有价值的见解。