Suppr超能文献

工程化活材料中微生物的控释

Controlled release of microorganisms from engineered living materials.

作者信息

Kalairaj Manivannan Sivaperuman, George Iris, George Sasha M, Farfán Sofía E, Lee Yoo Jin, Rivera-Tarazona Laura K, Wang Suitu, Abdelrahman Mustafa K, Tasmim Seelay, Dana Asaf, Zimmern Philippe E, Subashchandrabose Sargurunathan, Ware Taylor H

出版信息

bioRxiv. 2024 Sep 27:2024.09.25.615042. doi: 10.1101/2024.09.25.615042.

Abstract

UNLABELLED

Probiotics offer therapeutic benefits by modulating the local microbiome, the host immune response, and the proliferation of pathogens. Probiotics have the potential to treat complex diseases, but their persistence or colonization is required at the target site for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases clinically relevant doses of metabolically active probiotics in a sustained manner has been previously described. Here, we encapsulate stiff probiotic microorganisms within relatively less stiff hydrogels and show a generic mechanism where these microorganisms proliferate and induce hydrogel fracture, resulting in microbial release. Importantly, this fracture-based mechanism leads to microorganism release with zero-order release kinetics. Using this mechanism, small (∼1 μL) engineered living materials (ELMs) release >10 colony-forming-units (CFUs) of in 2 h. This release is sustained for at least 10 days. Cell release can be varied by more than three orders of magnitude by varying initial cell loading and modulating the mechanical properties of encapsulating matrix. As the governing mechanism of microbial release is entirely mechanical, we demonstrate controlled release of model Gram-negative, Gram-positive, and fungal probiotics from multiple hydrogel matrices.

SIGNIFICANCE

Probiotics offer therapeutic benefits and have the potential to treat complex diseases, but their persistence at the target site is often required for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases metabolically active probiotics in a sustained manner has been developed yet. This work demonstrates a generic mechanism where stiff probiotics encapsulated within relatively less stiff hydrogels proliferate and induce hydrogel fracture. This allows a zero-order release of probiotics which can be easily controlled by adjusting the properties of the encapsulating matrices. This generic mechanism is applicable for a wide range of probiotics with different synthetic matrices and has the potential to be used in the treatment of a broad range of diseases.

摘要

未标记

益生菌通过调节局部微生物群、宿主免疫反应和病原体增殖提供治疗益处。益生菌有治疗复杂疾病的潜力,但为实现有效治疗,它们需要在靶位点持续存在或定殖。虽然通过重复给药可实现益生菌的持续存在,但此前尚未描述过能持续释放临床相关剂量代谢活性益生菌的生物材料。在此,我们将坚硬的益生菌微生物封装在相对较软的水凝胶中,并展示了一种通用机制,即这些微生物增殖并导致水凝胶破裂,从而实现微生物释放。重要的是,这种基于破裂的机制导致微生物以零级释放动力学释放。利用这一机制,小型(约1微升)工程化活材料(ELM)在2小时内释放超过10个菌落形成单位(CFU)。这种释放可持续至少10天。通过改变初始细胞负载量和调节封装基质的机械性能,细胞释放量可在三个数量级以上变化。由于微生物释放的控制机制完全是机械性的,我们展示了从多种水凝胶基质中可控释放模型革兰氏阴性菌、革兰氏阳性菌和真菌益生菌。

意义

益生菌具有治疗益处,有治疗复杂疾病的潜力,但有效治疗通常需要它们在靶位点持续存在。虽然通过重复给药可实现益生菌的持续存在,但尚未开发出能持续释放代谢活性益生菌的生物材料。这项工作展示了一种通用机制,即封装在相对较软的水凝胶中的坚硬益生菌增殖并导致水凝胶破裂。这使得益生菌能够零级释放,可通过调整封装基质的性质轻松控制。这种通用机制适用于多种不同合成基质的益生菌,有潜力用于治疗多种疾病。

相似文献

2
Controlled Release of Microorganisms from Engineered Living Materials.工程化活材料中微生物的控释
ACS Appl Mater Interfaces. 2025 Jul 16;17(28):40326-40339. doi: 10.1021/acsami.5c11155. Epub 2025 Jul 8.
10
Rehabilitation for ankle fractures in adults.成人踝关节骨折康复。
Cochrane Database Syst Rev. 2024 Sep 23;9(9):CD005595. doi: 10.1002/14651858.CD005595.pub4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验