Suppr超能文献

生物分子凝聚物中流动活化能的微观起源

Microscopic Origins of Flow Activation Energy in Biomolecular Condensates.

作者信息

Yang Sean, Potoyan Davit A

出版信息

bioRxiv. 2024 Sep 26:2024.09.24.614801. doi: 10.1101/2024.09.24.614801.

Abstract

Material properties of biomolecular condensates dictate their form and function, influencing the diffusion of regulatory molecules and the dynamics of biochemical reactions. The increasing quality and quantity of microrheology experiments on biomolecular condensates necessitate a deeper understanding of the molecular grammar that encodes their material properties. Recent reports have identified a characteristic timescale related to network relaxation dynamics in condensates, which governs their temperature-dependent viscoelastic properties. This timescale is intimately connected to an activated process involving the dissociation of sticker regions, with the energetic barrier referred to as flow activation energy. The microscopic origin of activation energy is a complex function of sequence patterns, component stoichiometry, and external conditions. This study elucidates the microscopic origins of flow activation energy in single and multicomponent condensates composed of model peptide sequences with varying sticker and spacer motifs, with RNA as a secondary component. We dissected the effects of condensate density, RNA stoichiometry, and peptide sequence patterning using extensive sequence-resolved coarse-grained simulations. We found that flow activation energy is closely linked to the lifetime of sticker-sticker pairs under certain conditions, though the presence of multiple competing stickers further complicates this relationship. The insights gained in this study should help establish predictive multiscale models for the material properties and serve as a valuable guide for the programmable design of condensates.

摘要

生物分子凝聚物的材料特性决定了它们的形态和功能,影响着调节分子的扩散以及生化反应的动力学。对生物分子凝聚物进行的微流变学实验在质量和数量上都不断增加,这就需要更深入地理解编码其材料特性的分子规则。最近的报告确定了一个与凝聚物中网络弛豫动力学相关的特征时间尺度,该时间尺度决定了它们与温度相关的粘弹性特性。这个时间尺度与一个涉及粘性区域解离的活化过程密切相关,其能量障碍被称为流动活化能。活化能的微观起源是序列模式、组分化学计量和外部条件的复杂函数。本研究阐明了由具有不同粘性和间隔基序的模型肽序列组成的单组分和多组分凝聚物中流动活化能的微观起源,其中RNA作为次要组分。我们使用广泛的序列解析粗粒度模拟剖析了凝聚物密度、RNA化学计量和肽序列模式的影响。我们发现,在某些条件下,流动活化能与粘性-粘性对的寿命密切相关,不过多个竞争性粘性的存在使这种关系更加复杂。本研究中获得的见解应有助于建立材料特性的预测性多尺度模型,并为凝聚物的可编程设计提供有价值的指导。

相似文献

2
Microscopic Origins of Flow Activation Energy in Biomolecular Condensates.生物分子凝聚物中流动活化能的微观起源
J Phys Chem B. 2024 Dec 19;128(50):12348-12357. doi: 10.1021/acs.jpcb.4c05834. Epub 2024 Dec 5.
9
Viscoelasticity of globular protein-based biomolecular condensates.基于球状蛋白质的生物分子凝聚物的粘弹性。
Chem Sci. 2024 Nov 15;15(47):19795-19804. doi: 10.1039/d4sc03564j. eCollection 2024 Dec 4.
10
Dynamics of protein condensates in weak-binding regime.弱结合状态下蛋白质凝聚物的动力学
Phys Rev E. 2022 Oct;106(4-1):044403. doi: 10.1103/PhysRevE.106.044403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验