Suppr超能文献

空间多组学揭示了胰腺癌免疫治疗病理反应者中与三级淋巴结构相关的肿瘤内体液免疫生态位。

Spatial multi-omics reveal intratumoral humoral immunity niches associated with tertiary lymphoid structures in pancreatic cancer immunotherapy pathologic responders.

作者信息

Sidiropoulos Dimitrios N, Shin Sarah M, Wetzel Meredith, Girgis Alexander A, Bergman Daniel, Danilova Ludmila, Perikala Susheel, Shu Daniel H, Montagne Janelle M, Deshpande Atul, Leatherman James, Dequiedt Lucie, Jacobs Victoria, Ogurtsova Aleksandra, Mo Guanglan, Yuan Xuan, Lvovs Dmitrijs, Stein-O'Brien Genevieve, Yarchoan Mark, Zhu Qingfeng, Harper Elizabeth I, Weeraratna Ashani T, Kiemen Ashley L, Jaffee Elizabeth M, Zheng Lei, Ho Won Jin, Anders Robert A, Fertig Elana J, Kagohara Luciane T

出版信息

bioRxiv. 2024 Sep 23:2024.09.22.613714. doi: 10.1101/2024.09.22.613714.

Abstract

UNLABELLED

Pancreatic adenocarcinoma (PDAC) is a rapidly progressing cancer that responds poorly to immunotherapies. Intratumoral tertiary lymphoid structures (TLS) have been associated with rare long-term PDAC survivors, but the role of TLS in PDAC and their spatial relationships within the context of the broader tumor microenvironment remain unknown. We generated a spatial multi-omics atlas encompassing 26 PDAC tumors from patients treated with combination immunotherapies. Using machine learning-enabled H&E image classification models and unsupervised gene expression matrix factorization methods for spatial transcriptomics, we characterized cellular states within TLS niches spanning across distinct morphologies and immunotherapies. Unsupervised learning generated a TLS-specific spatial gene expression signature that significantly associates with improved survival in PDAC patients. These analyses demonstrate TLS-associated intratumoral B cell maturation in pathological responders, confirmed with spatial proteomics and BCR profiling. Our study also identifies spatial features of pathologic immune responses, revealing TLS maturation colocalizing with IgG/IgA distribution and extracellular matrix remodeling.

HIGHLIGHTS

Integrated multi-modal spatial profiling of human PDAC tumors from neoadjuvant immunotherapy clinical trials reveal diverse spatial niches enriched in TLS.TLS maturity is influenced by tumor location and the cellular neighborhoods in which TLS immune cells are recruited.Unsupervised machine learning of genome-wide signatures on spatial transcriptomics data characterizes the TLS-enriched TME and associates TLS transcriptomes with survival outcomes in PDAC.Interactions of spatially variable gene expression patterns showed TLS maturation is coupled with immunoglobulin distribution and ECM remodeling in pathologic responders.Intratumoral plasma cell and immunoglobin gene expression spatial dynamics demonstrate trafficking of TLS-driven humoral immunity in the PDAC TME.

SIGNIFICANCE

We report a spatial multi-omics atlas of PDAC tumors from a series of immunotherapy neoadjuvant clinical trials. Intratumorally, pathologic responders exhibit mature TLS that propagate plasma cells into malignant niches. Our findings offer insights on the role of TLS-associated humoral immunity and stromal remodeling during immunotherapy treatment.

摘要

未标记

胰腺腺癌(PDAC)是一种进展迅速的癌症,对免疫疗法反应不佳。肿瘤内三级淋巴结构(TLS)与罕见的长期PDAC幸存者有关,但TLS在PDAC中的作用及其在更广泛肿瘤微环境背景下的空间关系仍不清楚。我们生成了一个空间多组学图谱,涵盖了26例接受联合免疫疗法治疗的PDAC肿瘤患者。使用基于机器学习的苏木精和伊红(H&E)图像分类模型以及用于空间转录组学的无监督基因表达矩阵分解方法,我们对跨越不同形态和免疫疗法的TLS生态位内的细胞状态进行了表征。无监督学习生成了一个TLS特异性的空间基因表达特征,该特征与PDAC患者生存率的提高显著相关。这些分析证明了病理反应者中与TLS相关的肿瘤内B细胞成熟,这通过空间蛋白质组学和BCR分析得到了证实。我们的研究还确定了病理免疫反应的空间特征,揭示了TLS成熟与IgG/IgA分布和细胞外基质重塑共定位。

亮点

对新辅助免疫疗法临床试验中的人类PDAC肿瘤进行综合多模态空间分析,揭示了富含TLS的不同空间生态位。TLS成熟受肿瘤位置以及招募TLS免疫细胞的细胞邻域影响。对空间转录组学数据进行全基因组特征的无监督机器学习,表征了富含TLS的肿瘤微环境,并将TLS转录组与PDAC的生存结果相关联。空间可变基因表达模式的相互作用表明,在病理反应者中,TLS成熟与免疫球蛋白分布和细胞外基质重塑相关。肿瘤内浆细胞和免疫球蛋白基因表达的空间动态表明,在PDAC肿瘤微环境中存在由TLS驱动的体液免疫运输。

意义

我们报告了一系列免疫疗法新辅助临床试验中PDAC肿瘤的空间多组学图谱。在肿瘤内,病理反应者表现出成熟的TLS,其将浆细胞传播到恶性生态位中。我们的研究结果为免疫疗法治疗期间TLS相关体液免疫和基质重塑的作用提供了见解。

相似文献

6
M1 Macrophage-Derived TNF-α Promotes Pancreatic Cancer Ferroptosis Via p38 MAPK-ACSL4 Pathway.
Curr Mol Med. 2025 Jul 10. doi: 10.2174/0115665240374551250630075409.
8
An image analysis pipeline to quantify the spatial distribution of cell markers in stroma-rich tumors.
bioRxiv. 2025 May 1:2025.04.28.650414. doi: 10.1101/2025.04.28.650414.
10
Density of tertiary lymphoid structures predict clinical outcome in hepatoblastoma.
Pediatr Res. 2025 Jul 9. doi: 10.1038/s41390-025-04210-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验