Suppr超能文献

用于电子健康记录的以太坊区块链:保障并简化患者管理

Ethereum blockchain for electronic health records: securing and streamlining patient management.

作者信息

Mole J S Simi, Shaji R S

机构信息

St. Xavier's Catholic College of Engineering, Nagercoil, India.

All India Council for Technical Education, New Delhi, India.

出版信息

Front Med (Lausanne). 2024 Sep 25;11:1434474. doi: 10.3389/fmed.2024.1434474. eCollection 2024.

Abstract

Electronic health records (EHRs) are increasingly replacing traditional paper-based medical records due to their speed, security, and ability to eliminate redundant data. However, challenges such as EHR interoperability and privacy concerns remain unresolved. Blockchain, a distributed ledger technology comprising connected, encrypted data blocks, presents a promising solution. This study explores how blockchain technology can revolutionize hospital EHR management. Our proposed solution securely transfers medical records between patients and doctors using the InterPlanetary File System (IPFS) and the Ethereum platform. Utilizing smart contracts automates data transfers, ensuring patient anonymity and reducing computational complexity while securely storing patient data on the network. Patient records are stored locally on the Ganache server, with the front end managed using HTML, CSS, ReactJS, and JavaScript, and the backend developed in Solidity. Blockchain technologies combined with Role- Based access control instead of attribute -based access control. The system's throughput increases linearly with the number of users and requests, enhancing the framework's efficiency and scalability. The minimum recorded latency is 14 ms.

摘要

电子健康记录(EHRs)因其速度、安全性以及消除冗余数据的能力,正日益取代传统的纸质病历。然而,诸如电子健康记录的互操作性和隐私问题等挑战仍未得到解决。区块链是一种分布式账本技术,由相互连接、加密的数据块组成,它提供了一个很有前景的解决方案。本研究探讨区块链技术如何彻底改变医院电子健康记录管理。我们提出的解决方案利用星际文件系统(IPFS)和以太坊平台在患者和医生之间安全地传输病历。利用智能合约可实现数据传输自动化,确保患者匿名性,并在将患者数据安全存储在网络上的同时降低计算复杂性。患者记录存储在本地的Ganache服务器上,前端使用HTML、CSS、ReactJS和JavaScript进行管理,后端则用Solidity开发。区块链技术与基于角色的访问控制相结合,而非基于属性的访问控制。系统的吞吐量随用户数量和请求数量线性增加,提高了框架的效率和可扩展性。记录的最小延迟为14毫秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f176/11461297/c1efe475553b/fmed-11-1434474-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验