Suppr超能文献

基于可调谐机制的碳环糖配体的开发,该配体通过形成瞬态共价中间体来稳定糖苷水解酶。

Development of Tunable Mechanism-Based Carbasugar Ligands that Stabilize Glycoside Hydrolases through the Formation of Transient Covalent Intermediates.

作者信息

Bhosale Sandeep, Kandalkar Sachin, Gilormini Pierre-André, Akintola Oluwafemi, Rowland Rhianna, Adabala Pal John Pal, King Dustin, Deen Matthew C, Chen Xi, Davies Gideon J, Vocadlo David J, Bennet Andrew J

机构信息

Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.

Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.

出版信息

ACS Catal. 2024 Sep 20;14(19):14769-14779. doi: 10.1021/acscatal.4c04549. eCollection 2024 Oct 4.

Abstract

Mutations in many members of the set of human lysosomal glycoside hydrolases cause a wide range of lysosomal storage diseases. As a result, much effort has been directed toward identifying pharmacological chaperones of these lysosomal enzymes. The majority of the candidate chaperones are active site-directed competitive iminosugar inhibitors but these have met with limited success. As a first step toward an alternative class of pharmacological chaperones we explored the potential of small molecule mechanism-based reversible covalent inhibitors to form transient enzyme-inhibitor adducts. By serial synthesis and kinetic analysis of candidate molecules, we show that rational tuning of the chemical reactivity of glucose-configured carbasugars delivers cyclohexenyl-based allylic carbasugar that react with the lysosomal enzyme β-glucocerebrosidase (GCase) to form covalent enzyme-adducts with different half-lives. X-ray structural analysis of these compounds bound noncovalently to GCase, along with the structures of the covalent adducts of compounds that reacted with the catalytic nucleophile of GCase, reveal unexpected reactivities of these compounds. Using differential scanning fluorimetry, we show that formation of a transient covalent intermediate stabilizes the folded enzyme against thermal denaturation. In addition, these covalent adducts break down to liberate the active enzyme and a product that is no longer inhibitory. We further show that the one compound, which reacts through an unprecedented S1'-like mechanism, exhibits exceptional reactivity-illustrated by this compound also covalently labeling an α-glucosidase. We anticipate that such carbasugar-based single turnover covalent ligands may serve as pharmacological chaperones for lysosomal glycoside hydrolases and other disease-associated retaining glycosidases. The unusual reactivity of these molecules should also open the door to creation of new chemical biology probes to explore the biology of this important superfamily of glycoside hydrolases.

摘要

人类溶酶体糖苷水解酶家族中的许多成员发生突变会引发多种溶酶体贮积症。因此,人们投入了大量精力来寻找这些溶酶体酶的药理学伴侣分子。大多数候选伴侣分子是活性位点导向的竞争性亚氨基糖抑制剂,但这些抑制剂的效果有限。作为寻找另一类药理学伴侣分子的第一步,我们探索了基于小分子机制的可逆共价抑制剂形成瞬时酶 - 抑制剂加合物的潜力。通过对候选分子进行系列合成和动力学分析,我们发现对葡萄糖构型的碳环糖的化学反应性进行合理调控可得到基于环己烯基的烯丙基碳环糖,它们能与溶酶体酶β - 葡萄糖脑苷脂酶(GCase)反应形成具有不同半衰期的共价酶加合物。对这些与GCase非共价结合的化合物进行X射线结构分析,以及与GCase催化亲核试剂反应的化合物的共价加合物结构分析,揭示了这些化合物意想不到的反应活性。使用差示扫描荧光法,我们发现瞬时共价中间体的形成可使折叠的酶对热变性更稳定。此外,这些共价加合物会分解以释放活性酶和不再具有抑制作用的产物。我们进一步表明,一种通过前所未有的类似S'1机制反应的化合物表现出异常的反应活性——这种化合物还能共价标记α - 葡萄糖苷酶就说明了这一点。我们预计,这种基于碳环糖的单周转共价配体可作为溶酶体糖苷水解酶和其他与疾病相关的保留糖苷酶的药理学伴侣分子。这些分子不同寻常的反应活性也应为创建新的化学生物学探针打开大门,以探索这个重要的糖苷水解酶超家族的生物学特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4302/11459473/04af1d38ecc2/cs4c04549_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验