ICFO─Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain.
Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London WC2R 2LS, United Kingdom.
ACS Nano. 2024 Oct 22;18(42):28881-28893. doi: 10.1021/acsnano.4c09085. Epub 2024 Oct 10.
Viral capture and entry to target cells are the first crucial steps that ultimately lead to viral infection. Understanding these events is essential toward the design and development of suitable antiviral drugs and/or vaccines. Viral capture involves dynamic interactions of the virus with specific receptors in the plasma membrane of the target cells. In the last years, single virus tracking has emerged as a powerful approach to assess real time dynamics of viral processes in living cells and their engagement with specific cellular components. However, direct visualization of the early steps of multireceptor viral interactions at the single level has been largely impeded by the technical challenges associated with imaging individual multimolecular systems at relevant spatial (nanometer) and temporal (millisecond) scales. Here, we present a four-color, high-density quantum dot spatiotemporal mapping methodology to capture real-time interactions between individual virus-like-particles (VLPs) and three different viral (co-) receptors on the membrane of primary living immune cells derived from healthy donors. Together with quantitative tools, our approach revealed the existence of a coordinated spatiotemporal diffusion of the three different (co)receptors prior to viral engagement. By varying the temporal-windows of cumulated single-molecule localizations, we discovered that such a concerted diffusion impacts on the residence time of HIV-1 and SARS-CoV-2 VLPs on the host membrane and potential viral infectivity. Overall, our methodology offers the possibility for systematic analysis of the initial steps of viral-host interactions and could be easily implemented for the investigation of other multimolecular systems at the single-molecule level.
病毒捕获和进入靶细胞是最终导致病毒感染的关键的第一步。理解这些事件对于设计和开发合适的抗病毒药物和/或疫苗至关重要。病毒捕获涉及病毒与靶细胞质膜中特定受体的动态相互作用。在过去的几年中,单病毒跟踪已成为评估活细胞中病毒过程的实时动力学及其与特定细胞成分相互作用的有力方法。然而,由于与在相关空间(纳米)和时间(毫秒)尺度上成像单个多分子系统相关的技术挑战,直接可视化多受体病毒相互作用的早期步骤在很大程度上受到了阻碍。在这里,我们提出了一种四色、高密度量子点时空映射方法,以捕获源自健康供体的原代活免疫细胞的膜上单个病毒样颗粒(VLPs)与三种不同病毒(共)受体之间的实时相互作用。结合定量工具,我们的方法揭示了三种不同(共)受体在病毒结合之前存在协调的时空扩散。通过改变累积单分子定位的时间窗口,我们发现这种协调的扩散会影响 HIV-1 和 SARS-CoV-2 VLPs 在宿主膜上的停留时间和潜在的病毒感染力。总的来说,我们的方法为病毒-宿主相互作用的初始步骤的系统分析提供了可能性,并可以很容易地用于在单细胞水平上研究其他多分子系统。