Nan Jingbo, Peng Xiaotong, Plümper Oliver, Ten Have Iris C, Lu Jing-Guang, Liu Qian-Bao, Li Shao-Lin, Hu Yingjie, Liu Yu, Shen Zhen, Yao Weiqi, Tao Renbiao, Preiner Martina, Luo Yongxiang
Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.
Proc Natl Acad Sci U S A. 2024 Oct 22;121(43):e2308684121. doi: 10.1073/pnas.2308684121. Epub 2024 Oct 10.
The aqueous alteration of the oceanic lithosphere provides significant energy that impacts the synthesis and diversity of organic compounds, which are crucial for the deep carbon cycle and may have provided the first building blocks for life. Although abiotic organic synthesis has been documented in mantle-derived rocks, the formation mechanisms and complexity of organic compounds in crustal rocks remain largely unknown. Here, we show the specific association of aliphatic carbonaceous matter with Fe oxyhydroxides in mafic crustal rocks of the Southwest Indian Ridge (SWIR). We determine potential Fe-based pathways for abiotic organic synthesis from CO and H using multimodal and molecular nano-geochemical tools. Quantum mechanical modeling is further employed to constrain the catalytical activity of Fe oxyhydroxides, revealing that the catalytic cycle of hydrogen may play a key role in carbon-carbon bond formation. This approach offers the possibility of interpreting physicochemical organic formation and condensation mechanisms at an atomic scale. The findings expand our knowledge of the existence of abiotic organic carbon in the oceanic crustal rocks and emphasize the mafic oceanic crust of the SWIR as a potential site for low-temperature abiotic organic synthesis.
大洋岩石圈的水岩蚀变提供了大量能量,影响着有机化合物的合成与多样性,这些有机化合物对深部碳循环至关重要,可能为生命提供了最初的构建模块。尽管非生物有机合成已在地幔源岩石中得到记录,但地壳岩石中有机化合物的形成机制和复杂性仍 largely unknown。在此,我们展示了西南印度脊(SWIR)镁铁质地壳岩石中脂肪族碳质物质与铁的氢氧化物之间的特定关联。我们使用多模态和分子纳米地球化学工具确定了由一氧化碳和氢气进行非生物有机合成的潜在铁基途径。进一步采用量子力学建模来限制铁的氢氧化物的催化活性,揭示了氢的催化循环可能在碳 - 碳键形成中起关键作用。这种方法提供了在原子尺度上解释物理化学有机形成和缩合机制的可能性。这些发现扩展了我们对大洋地壳岩石中非生物有机碳存在情况的认识,并强调了西南印度脊的镁铁质大洋地壳作为低温非生物有机合成潜在场所的重要性。