Université de Lyon, Univ Lyon 1, CNRS UMR5276, ENS de Lyon, LGL-TPE, Villeurbanne Cedex, France.
Institut Universitaire de France, Paris, France.
Nat Commun. 2023 Jan 21;14(1):347. doi: 10.1038/s41467-023-36038-6.
How simple abiotic organic compounds evolve toward more complex molecules of potentially prebiotic importance remains a missing key to establish where life possibly emerged. The limited variety of abiotic organics, their low concentrations and the possible pathways identified so far in hydrothermal fluids have long hampered a unifying theory of a hydrothermal origin for the emergence of life on Earth. Here we present an alternative road to abiotic organic synthesis and diversification in hydrothermal environments, which involves magmatic degassing and water-consuming mineral reactions occurring in mineral microcavities. This combination gathers key gases (N, H, CH, CHSH) and various polyaromatic materials associated with nanodiamonds and mineral products of olivine hydration (serpentinization). This endogenous assemblage results from re-speciation and drying of cooling C-O-S-H-N fluids entrapped below 600 °C-2 kbars in rocks forming the present-day oceanic lithosphere. Serpentinization dries out the system toward macromolecular carbon condensation, while olivine pods keep ingredients trapped until they are remobilized for further reactions at shallower levels. Results greatly extend our understanding of the forms of abiotic organic carbon available in hydrothermal environments and open new pathways for organic synthesis encompassing the role of minerals and drying. Such processes are expected in other planetary bodies wherever olivine-rich magmatic systems get cooled down and hydrated.
简单的非生物有机化合物如何演变成具有潜在原始生命意义的更复杂的分子,这仍然是确定生命可能起源的关键缺失环节。在热液流体中,非生物有机物的种类有限、浓度低,而且迄今为止可能的途径也已经确定,这长期以来阻碍了关于地球上生命起源的热液起源的统一理论的形成。在这里,我们提出了一种在热液环境中非生物有机合成和多样化的替代途径,其中涉及到在矿物微腔中发生的岩浆脱气和耗水矿物反应。这种组合汇集了关键气体(N、H、CH、CHSH)和各种多环芳烃材料,与纳米金刚石和橄榄石水合(蛇纹石化)的矿物产物有关。这种内源性组合是由冷却的 C-O-S-H-N 流体在 600°C-2kbars 以下的岩石中重新分类和干燥形成的,这些岩石构成了现代海洋岩石圈。蛇纹石化使系统干燥,有利于大分子碳的凝结,而橄榄石荚则将成分困住,直到它们在较浅的层次上重新移动进行进一步的反应。研究结果大大扩展了我们对热液环境中非生物有机碳形式的理解,并为包括矿物和干燥作用在内的有机合成开辟了新途径。只要富含橄榄石的岩浆系统冷却和水合,这种过程预计就会在其他行星体中发生。