Zhu Lin, Chen Xianzhang, Wang Lizhi, Wang Xiao, Tian Yonghong, Huang Hua
IEEE Trans Pattern Anal Mach Intell. 2025 Feb;47(2):807-824. doi: 10.1109/TPAMI.2024.3477591. Epub 2025 Jan 9.
Event cameras are novel bio-inspired sensors, where individual pixels operate independently and asynchronously, generating intensity changes as events. Leveraging the microsecond resolution (no motion blur) and high dynamic range (compatible with extreme light conditions) of events, there is considerable promise in directly segmenting objects from sparse and asynchronous event streams in various applications. However, different from the rich cues in video object segmentation, it is challenging to segment complete objects from the sparse event stream. In this paper, we present the first framework for continuous-time object segmentation from event stream. Given the object mask at the initial time, our task aims to segment the complete object at any subsequent time in event streams. Specifically, our framework consists of a Recurrent Temporal Embedding Extraction (RTEE) module based on a novel ResLSTM, a Cross-time Spatiotemporal Feature Modeling (CSFM) module which is a transformer architecture with long-term and short-term matching modules, and a segmentation head. The historical events and masks (reference sets) are recurrently fed into our framework along with current-time events. The temporal embedding is updated as new events are input, enabling our framework to continuously process the event stream. To train and test our model, we construct both real-world and simulated event-based object segmentation datasets, each comprising event streams, APS images, and object annotations. Extensive experiments on our datasets demonstrate the effectiveness of the proposed recurrent architecture.
事件相机是一种新型的受生物启发的传感器,其单个像素独立且异步运行,将强度变化作为事件生成。利用事件的微秒级分辨率(无运动模糊)和高动态范围(与极端光照条件兼容),在各种应用中直接从稀疏和异步事件流中分割物体具有很大的前景。然而,与视频对象分割中的丰富线索不同,从稀疏事件流中分割完整物体具有挑战性。在本文中,我们提出了第一个用于从事件流中进行连续时间对象分割的框架。给定初始时刻的对象掩码,我们的任务旨在在事件流中的任何后续时刻分割完整的对象。具体来说,我们的框架由基于新型ResLSTM的循环时间嵌入提取(RTEE)模块、作为具有长期和短期匹配模块的变压器架构的跨时间时空特征建模(CSFM)模块以及一个分割头组成。历史事件和掩码(参考集)与当前时刻的事件一起循环输入到我们的框架中。随着新事件的输入,时间嵌入会更新,使我们的框架能够连续处理事件流。为了训练和测试我们的模型,我们构建了基于真实世界和模拟事件的对象分割数据集,每个数据集都包含事件流、APS图像和对象注释。在我们的数据集上进行的大量实验证明了所提出的循环架构的有效性。