Suppr超能文献

通过参数高效自适应实现缺失模态的稳健多模态学习。

Robust Multimodal Learning With Missing Modalities via Parameter-Efficient Adaptation.

作者信息

Reza Md Kaykobad, Prater-Bennette Ashley, Asif M Salman

出版信息

IEEE Trans Pattern Anal Mach Intell. 2025 Feb;47(2):742-754. doi: 10.1109/TPAMI.2024.3476487. Epub 2025 Jan 9.

Abstract

Multimodal learning seeks to utilize data from multiple sources to improve the overall performance of downstream tasks. It is desirable for redundancies in the data to make multimodal systems robust to missing or corrupted observations in some correlated modalities. However, we observe that the performance of several existing multimodal networks significantly deteriorates if one or multiple modalities are absent at test time. To enable robustness to missing modalities, we propose a simple and parameter-efficient adaptation procedure for pretrained multimodal networks. In particular, we exploit modulation of intermediate features to compensate for the missing modalities. We demonstrate that such adaptation can partially bridge performance drop due to missing modalities and outperform independent, dedicated networks trained for the available modality combinations in some cases. The proposed adaptation requires extremely small number of parameters (e.g., fewer than 1% of the total parameters) and applicable to a wide range of modality combinations and tasks. We conduct a series of experiments to highlight the missing modality robustness of our proposed method on five different multimodal tasks across seven datasets. Our proposed method demonstrates versatility across various tasks and datasets, and outperforms existing methods for robust multimodal learning with missing modalities.

摘要

多模态学习旨在利用来自多个源的数据来提高下游任务的整体性能。数据中的冗余有助于多模态系统对某些相关模态中缺失或损坏的观测具有鲁棒性,这是很理想的。然而,我们观察到,如果在测试时缺少一个或多个模态,几个现有的多模态网络的性能会显著下降。为了使模型对缺失模态具有鲁棒性,我们为预训练的多模态网络提出了一种简单且参数高效的自适应过程。具体来说,我们利用中间特征的调制来补偿缺失的模态。我们证明,这种自适应可以部分弥补由于缺失模态导致的性能下降,并且在某些情况下优于为可用模态组合训练的独立专用网络。所提出的自适应方法需要极少的参数(例如,少于总参数的1%),并且适用于广泛的模态组合和任务。我们进行了一系列实验,以突出我们提出的方法在七个数据集中的五个不同多模态任务上对缺失模态的鲁棒性。我们提出的方法在各种任务和数据集上都表现出通用性,并且在具有缺失模态的鲁棒多模态学习方面优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验