Suppr超能文献

GAPses:用于舒适且完全干燥地采集脑电图(EEG)和眼电图(EOG)并进行并行超低功耗处理的多功能智能眼镜。

GAPses: Versatile Smart Glasses for Comfortable and Fully-Dry Acquisition and Parallel Ultra-Low-Power Processing of EEG and EOG.

作者信息

Frey Sebastian, Lucchini Mattia Alberto, Kartsch Victor, Ingolfsson Thorir Mar, Bernardi Andrea Helga, Segessenmann Michael, Osieleniec Jakub, Benatti Simone, Benini Luca, Cossettini Andrea

出版信息

IEEE Trans Biomed Circuits Syst. 2025 Jun;19(3):616-628. doi: 10.1109/TBCAS.2024.3478798.

Abstract

Recent advancements in head-mounted wearable technology are revolutionizing the field of biopotential measurement, but the integration of these technologies into practical, user-friendly devices remains challenging due to issues with design intrusiveness, comfort, reliability, and data privacy. To address these challenges, this paper presents GAPses, a novel smart glasses platform designed for unobtrusive, comfortable, and secure acquisition and processing of electroencephalography (EEG) and electrooculography (EOG) signals. We introduce a direct electrode-electronics interface within a sleek frame design, with custom fully dry soft electrodes to enhance comfort for long wear. The fully assembled glasses, including electronics, weigh 40 g and have a compact size of 160 mm x 145 mm. An integrated parallel ultra-low-power RISC-V processor (GAP9, Greenwaves Technologies) processes data at the edge, thereby eliminating the need for continuous data streaming through a wireless link, enhancing privacy, and increasing system reliability in adverse channel conditions. We demonstrate the broad applicability of the designed prototype through validation in a number of EEG-based interaction tasks, including alpha waves, steady-state visual evoked potential analysis, and motor movement classification. Furthermore, we demonstrate an EEG-based biometric subject recognition task, where we reach a sensitivity and specificity of 98.87% and 99.86% respectively, with only 8 EEG channels and an energy consumption per inference on the edge as low as 121 $\mu$J. Moreover, in an EOG-based eye movement classification task, we reach an accuracy of 96.68% on 11 classes, resulting in an information transfer rate of 94.78 bit/min, which can be further increased to 161.43 bit/min by reducing the accuracy to 81.43%. The deployed implementation has an energy consumption of 40 $\mu$J per inference and a total system power of only 12.4 mW, of which only 1.61% is used for classification, allowing for continuous operation of more than 22 h with a small 75 mAh battery.

摘要

头戴式可穿戴技术的最新进展正在彻底改变生物电位测量领域,但由于设计的侵入性、舒适性、可靠性和数据隐私等问题,将这些技术集成到实用、用户友好的设备中仍然具有挑战性。为了应对这些挑战,本文介绍了GAPses,这是一种新颖的智能眼镜平台,旨在以不引人注意、舒适且安全的方式采集和处理脑电图(EEG)和眼电图(EOG)信号。我们在时尚的框架设计中引入了直接电极 - 电子接口,配备定制的全干式软电极,以提高长时间佩戴的舒适度。包括电子设备在内的完整组装眼镜重40克,尺寸紧凑,为160毫米×145毫米。集成的并行超低功耗RISC - V处理器(GAP9,Greenwaves Technologies)在边缘进行数据处理,从而无需通过无线链路持续传输数据,增强了隐私性,并提高了在恶劣信道条件下的系统可靠性。我们通过在一些基于EEG的交互任务中进行验证,展示了所设计原型的广泛适用性,这些任务包括阿尔法波、稳态视觉诱发电位分析和运动动作分类。此外,我们展示了一项基于EEG的生物特征主体识别任务,在该任务中,仅使用8个EEG通道,边缘每推理一次的能耗低至121 μJ,我们分别达到了98.87%的灵敏度和99.86%的特异性。此外,在基于EOG的眼动分类任务中,我们在11个类别上达到了96.68%的准确率,信息传输速率为94.78比特/分钟,通过将准确率降低到81.43%,该速率可进一步提高到161.43比特/分钟。所部署的实现每推理一次的能耗为40 μJ,系统总功耗仅为12.4毫瓦,其中仅1.61%用于分类,使用一个75毫安的小电池可实现超过22小时的连续运行。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验