Liu Guo-Ping
IEEE Trans Cybern. 2024 Dec;54(12):7198-7210. doi: 10.1109/TCYB.2024.3471608. Epub 2024 Nov 27.
With the advancement of computing technology and big data technology, digital twins have gradually been applied in various fields, such as manufacturing, energy, and healthcare. This article studies the predictive control of nonlinear dynamic systems using digital twins. Based on a digital-twin control system framework, predictive control is discussed for three different nonlinear systems with time delays: 1) known nonlinear systems; 2) unknown nonlinear systems; and 3) unknown nonlinear cyber-physical systems. Both a digital-twin predictive control strategy and a digital-twin control predictor are proposed to compensate for time delays and communication delays actively. With the strategy and predictor, the digital-twin controller of a time-delay nonlinear system can be designed to achieve the desired performance based on the nonlinear system without time delays, which vastly simplifies the controller design procedure. A digital model is constructed using data to deal with unknown nonlinear dynamics. The three different closed-loop digital-twin predictive control systems are analyzed to derive a unified stability criterion. The simulation results show how the proposed digital-twin predictive control method performs well for nonlinear systems with time delays, unknown dynamics, and/or communication delays.
随着计算技术和大数据技术的发展,数字孪生逐渐应用于制造、能源和医疗等各个领域。本文研究了使用数字孪生对非线性动态系统进行预测控制。基于数字孪生控制系统框架,针对三种不同的具有时滞的非线性系统讨论了预测控制:1)已知非线性系统;2)未知非线性系统;3)未知非线性网络物理系统。提出了一种数字孪生预测控制策略和一个数字孪生控制预测器,以主动补偿时滞和通信延迟。利用该策略和预测器,可以基于无时滞的非线性系统设计时滞非线性系统的数字孪生控制器,以实现期望的性能,这极大地简化了控制器设计过程。利用数据构建数字模型来处理未知非线性动态。分析了三种不同的闭环数字孪生预测控制系统,以推导统一的稳定性准则。仿真结果表明了所提出的数字孪生预测控制方法对于具有时滞、未知动态和/或通信延迟的非线性系统的良好性能。