Hu Bo, Kundu Tribikram
Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; Department of Civil and Architectural Engineering and Mechanics, University of Arizona, Tucson, AZ 85721, USA.
Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; Department of Civil and Architectural Engineering and Mechanics, University of Arizona, Tucson, AZ 85721, USA; Materials Science and Engineering Department, University of Arizona, Tucson, AZ 85721, USA.
Ultrasonics. 2025 Jan;145:107485. doi: 10.1016/j.ultras.2024.107485. Epub 2024 Oct 5.
This paper addresses the critical issue of detecting and localizing damage in plate-like structures, which are commonly encountered in aerospace, marine and other engineering applications. To address this challenge, the current study introduces the sideband peak count (SPC) technique as the foundation for diagnostic imaging for damage detection in plate structures. The proposed damage detection algorithm requires only a limited number of sensor responses, streamlining the detection process. It does not rely on a reference baseline, thereby enhancing its efficiency and accuracy. This approach enables rapid and precise identification of damage and its location within the plate structure. To validate the effectiveness and applicability of the proposed method, finite element simulation results are utilized. These results demonstrate the capability of the proposed technique to accurately detect and localize damage, providing a promising solution for enhancing the structural health monitoring of plate-like structures in various engineering domains.