Suppr超能文献

基于活性的蛋白质谱分析指导喹唑啉衍生物新靶点的鉴定以加速杀菌剂的发现:基于活性的蛋白质谱分析实现了抗菌喹唑啉新靶点的发现。

Activity-based protein profiling guided new target identification of quinazoline derivatives for expediting bactericide discovery: Activity-based protein profiling derived new target discovery of antibacterial quinazolines.

作者信息

Meng Jiao, Zhang Ling, Tuo Xinxin, Ding Yue, Chen Kunlun, Li Mei, Chen Biao, Long Qingsu, Wang Zhenchao, Ouyang Guiping, Zhou Xiang, Yang Song

机构信息

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

出版信息

J Adv Res. 2025 Aug;74:57-72. doi: 10.1016/j.jare.2024.10.002. Epub 2024 Oct 9.

Abstract

INTRODUCTION

The looming antibiotic-resistance problem has imposed an enormous crisis on global public health and agricultural development. Even worse, the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens have made the resurgence of diseases that were once easily treatable deadly again. The development of antibiotics with novel mechanisms of action is urgently required.

OBJECTIVES

Inspired by charming activity-based protein profiling (ABPP) technology and increasing attention to quinazolines in the development of antibacterial agents, this study engineered a series of new quinazoline derivatives, assessed their antibacterial profiles, and first identified the possible target.

METHODS

The target identification and their possible binding sites were verified by ABPP technology, molecular docking, and molecular dynamic simulations. The fatty acid synthesis process was analyzed by gas chromatography, propidium iodide staining, and scanning electron microscopy. The physicochemical properties and fungicide-likeness were evaluated using the Fungicide Physicochemical-properties Analysis Database.

RESULTS

Compound 7a, an acrylamide-functionalized quinazoline derivative, exhibited excellent antibacterial potency against Xanthomonas oryzae pv. oryzae with an EC value of 13.20 µM. More importantly, ABPP technology showed that β-ketoacyl-ACP-synthase Ⅱ (FabF) was the first identified quinazolines' potential target. Compound 7a could selectively bind to the Cys151 residue of FabF through covalent interaction, suppress fatty acid biosynthesis, and damage the cell membrane integrity, thereby killing the bacteria. The pot experiment results showed that compound 7a demonstrated protective and curative values of 49.55 % and 47.46 %, surpassing controls bismerthiazol and thiodiazole copper. Finally, compound 7a exhibited low toxicity towards non-target organisms. These unprecedented performances contributed to excavating new quinazoline-based bactericidal agents.

CONCLUSION

Our research highlights the superiority of ABPP technology, for the first time, identifies the target of engineered quinazolines in pathogenic bacteria, and their potential target fished by ABPP tools holds great promise for the development of quinazoline-based and/or FabF-targeted bactericides.

摘要

引言

迫在眉睫的抗生素耐药性问题给全球公共卫生和农业发展带来了巨大危机。更糟糕的是,细菌病原体中抗生素耐药性元件的进化和广泛传播,使得曾经易于治疗的疾病再次死灰复燃,变得致命。迫切需要开发具有新型作用机制的抗生素。

目的

受迷人的基于活性的蛋白质谱分析(ABPP)技术以及在抗菌剂开发中对喹唑啉日益增加的关注启发,本研究设计了一系列新的喹唑啉衍生物,评估了它们的抗菌谱,并首次确定了可能的靶点。

方法

通过ABPP技术、分子对接和分子动力学模拟验证靶点识别及其可能的结合位点。通过气相色谱、碘化丙啶染色和扫描电子显微镜分析脂肪酸合成过程。使用杀菌剂理化性质分析数据库评估理化性质和类杀菌剂性质。

结果

化合物7a,一种丙烯酰胺官能化的喹唑啉衍生物,对水稻白叶枯病菌表现出优异的抗菌效力,EC值为13.20 μM。更重要的是,ABPP技术表明β-酮脂酰-ACP合酶Ⅱ(FabF)是首次确定的喹唑啉类化合物的潜在靶点。化合物7a可通过共价相互作用选择性地与FabF的Cys151残基结合,抑制脂肪酸生物合成,并破坏细胞膜完整性,从而杀死细菌。盆栽试验结果表明,化合物7a的保护率和治愈率分别为49.55%和47.46%,超过对照药剂叶枯唑和噻森铜。最后,化合物7a对非靶标生物表现出低毒性。这些前所未有的性能有助于挖掘新型喹唑啉类杀菌剂。

结论

我们的研究突出了ABPP技术的优越性,首次确定了工程化喹唑啉类化合物在病原菌中的靶点,并且通过ABPP工具找到的潜在靶点对开发基于喹唑啉和/或靶向FabF的杀菌剂具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebcf/12302339/8d3d51a0d718/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验