Li Ketian, Yu Kunhao, Zhang Yanchu, Du Haixu, Sioutas Constantinos, Wang Qiming
Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
Sci Rep. 2024 Oct 10;14(1):23710. doi: 10.1038/s41598-024-74137-6.
Recent research highlights that non-exhaust emissions from the abrasion of tires and other organic materials have emerged as a substantial source of airborne particulate matter and marine microplastics. Despite their growing impact, the underlying mechanisms driving these abrasion emissions have remained largely unexplored. In this study, we uncover that abrasion emissions from organic materials are fundamentally governed by a fatigue fracture process, wherein particles are progressively detached from the material surface under cyclic abrasion loads. Our findings demonstrate that these emissions increase significantly only when the applied abrasion loads surpass the material's toughness threshold. We establish a scaling relationship between the concentration of emitted particulate matter and the measurable crack propagation rate of the organic material, offering a robust quantitative method to estimate abrasion emissions. This work not only introduces a novel mechanistic framework for understanding particulate matter pollution from organic material abrasion but also provides a scientific basis for developing strategies to mitigate emissions of airborne particulates and marine microplastics.
近期研究表明,轮胎磨损及其他有机材料产生的非尾气排放已成为空气中颗粒物和海洋微塑料的重要来源。尽管其影响日益增大,但驱动这些磨损排放的潜在机制在很大程度上仍未得到探索。在本研究中,我们发现有机材料的磨损排放从根本上受疲劳断裂过程支配,在此过程中,颗粒在循环磨损载荷作用下逐渐从材料表面脱落。我们的研究结果表明,只有当施加的磨损载荷超过材料的韧性阈值时,这些排放才会显著增加。我们建立了排放颗粒物浓度与有机材料可测量的裂纹扩展速率之间的标度关系,提供了一种可靠的定量方法来估算磨损排放。这项工作不仅引入了一个新的机理框架来理解有机材料磨损产生的颗粒物污染,还为制定减少空气中颗粒物和海洋微塑料排放的策略提供了科学依据。