Suppr超能文献

利用早产儿时间序列分析开发一种识别脑室内出血的机器学习模型。

Development of a machine learning model to identify intraventricular hemorrhage using time-series analysis in preterm infants.

机构信息

Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea.

Department of Health Science and Technology, Seoul National University, Seoul, Republic of Korea.

出版信息

Sci Rep. 2024 Oct 10;14(1):23740. doi: 10.1038/s41598-024-74298-4.

Abstract

Although the prevalence of intraventricular hemorrhage (IVH) has remained high, no optimal strategy has been established to prevent it. This study included preterm newborns born at a gestational age of < 32 weeks admitted to the neonatal intensive care unit of a tertiary hospital between January 2013 and June 2022. Infants who had been observed for less than 24 h were excluded. A total of 14 features from time-series data after birth to IVH diagnosis were chosen for model development using an automated machine-learning method. The average F1 scores and area under the receiver operating characteristic curve (AUROC) were used as indicators for comparing the models. We analyzed 778 preterm newborns (79 with IVH, 10.2%; 699 with no IVH, 89.8%) with a median gestational age of 29.4 weeks and birth weight of 1180 g. Model development was performed using data from 748 infants after applying the exclusion criteria. The Extra Trees Classifier model showed the best performance with an average F1 score of 0.93 and an AUROC of 0.999. We developed a model for identifying IVH with excellent accuracy. Further research is needed to recognize high-risk infants in real time.

摘要

尽管脑室内出血 (IVH) 的患病率仍然很高,但尚未建立预防 IVH 的最佳策略。本研究纳入了 2013 年 1 月至 2022 年 6 月期间在一家三级医院新生儿重症监护病房住院的胎龄 <32 周的早产儿。排除了观察时间不足 24 小时的婴儿。使用自动化机器学习方法,从出生后到 IVH 诊断的时间序列数据中选择了 14 个特征用于模型开发。平均 F1 评分和受试者工作特征曲线下的面积 (AUROC) 被用作比较模型的指标。我们分析了 778 名早产儿(79 名有 IVH,10.2%;699 名无 IVH,89.8%),中位胎龄为 29.4 周,出生体重为 1180g。应用排除标准后,使用 748 名婴儿的数据进行模型开发。Extra Trees 分类器模型表现最佳,平均 F1 评分为 0.93,AUROC 为 0.999。我们开发了一种具有出色准确性的 IVH 识别模型。需要进一步研究以实时识别高危婴儿。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7657/11467187/b4fc20cf82dd/41598_2024_74298_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验