Suppr超能文献

手机暴露对心脏电测量的影响:多变量分析及用于检测与均值变化关系的变量选择算法

The Effect of Exposure to Mobile Phones on Electrical Cardiac Measurements: A Multivariate Analysis and a Variable Selection Algorithm to Detect the Relationship With Mean Changes.

作者信息

Alharbi Nader, Alassiri Mohammed

机构信息

Department of Basic Sciences College of Science and Health Professions King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia.

King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia.

出版信息

Int J Cell Biol. 2024 Oct 3;2024:7093771. doi: 10.1155/2024/7093771. eCollection 2024.

Abstract

The exponential growth in mobile phone usage has raised concerns about electromagnetic field (EMF) exposure and its health risks. Blood pressure and BMI, which impair heart function due to decreased adrenoreceptor responsiveness, parasympathetic tone withdrawal, and increased sympathetic activity, may further exacerbate these risks. However, the effects of radiofrequency electromagnetic (RF-EM) exposure from mobile phones on electrocardiograms (ECGs) and heart rate variability (HRV) in individuals remain unclear. Building upon our previous findings on HRV changes due to mobile phone proximity, this study is aimed at significantly enhancing the analytical approach used to assess the effects of mobile phones on cardiac parameters. This study exploits data from a previous study but with a different purpose. The aim of this study is twofold: (a) to examine whether exposure to mobile phones changes the five variables (P-R, QRS, QT, ST, and HR) in a multivariate manner and (b) to examine whether the blood pressure and/or the body mass index (BMI), which acts as a proxy for obesity, have an effect on the change of these five variables. For both aspects of the study, four cycles are performed. We conducted multivariate analysis on previously collected electrical cardiac measurement data from 20 healthy male subjects exposed to mobile phone EMF, with the mobile phones placed at four different body locations. The one-sample Hotelling test on the mean vector of differences was utilised instead of multiple paired -tests. This multivariate method comprehensively analyzes data features and accounts for variable correlations, unlike multiple univariate analyses. Given our small sample size, we employed the MMPC variable selection algorithm to identify predictor variables significantly related to mean changes. Significant alterations in ECG intervals and heart rate were noted in the subjects before and after the first EMF exposure cycle, independent of their BMI. Notably, heart rate, P-R, and QRS intervals fell postexposure while QT and ST intervals increased. These changes were influenced by variations in systolic blood pressure, with BMI showing no significant effect. The observed modifications in cardiac electrical measurements due to mobile phone EMF exposure are attributed to the effects of EMF itself, with no impact from BMI on the extent of these changes.

摘要

手机使用的指数级增长引发了人们对电磁场(EMF)暴露及其健康风险的担忧。血压和体重指数会因肾上腺素能受体反应性降低、副交感神经张力减退以及交感神经活动增加而损害心脏功能,可能会进一步加剧这些风险。然而,手机发出的射频电磁(RF-EM)辐射对个体心电图(ECG)和心率变异性(HRV)的影响仍不明确。基于我们之前关于因手机靠近而导致HRV变化的研究结果,本研究旨在显著改进用于评估手机对心脏参数影响的分析方法。本研究利用了之前一项研究的数据,但目的不同。本研究的目的有两个:(a)以多变量方式检查接触手机是否会改变五个变量(P-R、QRS、QT、ST和HR);(b)检查作为肥胖指标的血压和/或体重指数(BMI)是否会对这五个变量的变化产生影响。对于研究的两个方面,均进行了四个周期的实验。我们对之前收集的20名暴露于手机EMF的健康男性受试者的心脏电测量数据进行了多变量分析,手机放置在四个不同的身体部位。使用了对差异均值向量的单样本霍特林检验,而不是多个配对检验。与多个单变量分析不同,这种多变量方法全面分析数据特征并考虑变量相关性。鉴于我们的样本量较小,我们采用了MMPC变量选择算法来识别与均值变化显著相关的预测变量。在第一个EMF暴露周期前后,受试者的ECG间期和心率出现了显著变化,与他们的BMI无关。值得注意的是,暴露后心率、P-R和QRS间期下降,而QT和ST间期增加。这些变化受收缩压变化的影响,BMI未显示出显著影响。观察到的因手机EMF暴露导致的心脏电测量变化归因于EMF本身的影响,BMI对这些变化的程度没有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad2/11466589/b2e4578a76b2/IJCB2024-7093771.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验