Department of Neuroscience, Cell Biology & Physiology Boonshoft School of Medicine and College of Science and Mathematics, Wright State University Dayton OH.
J Am Heart Assoc. 2024 Oct 15;13(20):e036626. doi: 10.1161/JAHA.124.036626. Epub 2024 Oct 11.
Heart failure (HF) presents a massive burden to health care with a complex pathophysiology that results in HF with reduced left ventricle ejection fraction (EF) or HF with preserved EF. It has been shown that relatively modest changes in protein glycosylation, an essential posttranslational modification, are associated with clinical presentations of HF. We and others previously showed that such aberrant protein glycosylation in animal models can lead to HF.
We develop and characterize a novel, tamoxifen-inducible, cardiomyocyte knockout mouse strain, achieved through deletion of , alpha-1,3-mannosyl-glycoproten 2-beta-N-acetlyglucosaminyltransferase, which encodes N-acetylglucosaminyltransferase I. We investigate the role of hybrid/complex N-glycosylation in adult HFrEF pathogenesis at the ion channel, cardiomyocyte, tissue, and gross cardiac level. The data demonstrate successful reduction of N-acetylglucosaminyltransferase I activity and confirm that hybrid/complex N-glycans modulate gating of cardiomyocyte voltage-gated calcium channels. A longitudinal study shows that the tamoxifen-inducible, cardiomyocyte knockout mice present with significantly reduced systolic function by 28 days post induction that progresses into HFrEF by 8 weeks post induction, without significant ventricular dilation or hypertrophy. Further, there was minimal, if any, physiologic or pathophysiologic cardiomyocyte electromechanical remodeling or fibrosis observed before (10-21 days post induction) or after (90-130 days post induction) HFrEF development.
The tamoxifen-inducible, cardiomyocyte knockout mouse strain created and characterized here provides a model to describe novel mechanisms and causes responsible for HFrEF onset in the adult, likely occurring primarily through tissue-level reductions in electromechanical activity in the absence of (or at least before) cardiomyocyte remodeling and fibrosis.
心力衰竭(HF)给医疗保健带来了巨大的负担,其复杂的病理生理学导致射血分数降低的心力衰竭(HFREF)或射血分数保留的心力衰竭(HFpEF)。已经表明,蛋白质糖基化的相对微小变化,一种必要的翻译后修饰,与心力衰竭的临床表现有关。我们和其他人之前曾表明,在动物模型中,这种异常的蛋白质糖基化会导致心力衰竭。
我们开发并表征了一种新型的、可诱导的、心肌细胞 knockout 小鼠品系,通过删除编码 N-乙酰葡萄糖胺转移酶 I 的α-1,3-甘露糖基糖蛋白 2-β-N-乙酰葡萄糖胺基转移酶来实现。我们研究了混合/复杂 N-糖基化在成人 HFrEF 发病机制中的作用,包括离子通道、心肌细胞、组织和整体心脏水平。数据表明,N-乙酰葡萄糖胺转移酶 I 活性的成功降低,并证实混合/复杂 N-聚糖调节心肌细胞电压门控钙通道的门控。一项纵向研究表明,在诱导后 28 天,可诱导的心肌细胞 knockout 小鼠表现出明显的收缩功能降低,在诱导后 8 周进展为 HFrEF,而没有明显的心室扩张或肥大。此外,在 HFrEF 发展之前(诱导后 10-21 天)或之后(诱导后 90-130 天)观察到,如果有,也只有最小的生理性或病理性心肌细胞机电重塑或纤维化。
在这里创建和表征的可诱导的心肌细胞 knockout 小鼠品系为描述成人 HFrEF 发病的新机制和原因提供了一个模型,可能主要通过组织水平的机电活性降低而发生,而没有(或至少在)心肌细胞重塑和纤维化之前。