Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization, School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, People's Republic of China.
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, People's Republic of China.
Biointerphases. 2024 Sep 1;19(5). doi: 10.1116/6.0003986.
In this work, the adsorption behavior of cytochrome c (Cyt-c) on five different self-assembled monolayers (SAMs) (i.e., CH3-SAM, OH-SAM, NH2-SAM, COOH-SAM, and OSO3--SAM) was studied by combined parallel tempering Monte Carlo and molecular dynamics simulations. The results show that Cyt-c binds to the CH3-SAM through a hydrophobic patch (especially Ile81) and undergoes a slight reorientation, while the adsorption on the OH-SAM is relatively weak. Cyt-c cannot stably bind to the lower surface charge density (SCD, 7% protonation) NH2-SAM even under a relatively high ionic strength condition, while a higher SCD of 25% protonation promotes Cyt-c adsorption on the NH2-SAM. The preferred adsorption orientations of Cyt-c on the negatively-charged surfaces are very similar, regardless of the surface chemistry and the SCD. As the SCD increases, more counterions are attracted to the charged surfaces, forming distinct counterion layers. The secondary structure of Cyt-c is well kept when adsorbed on these SAMs except the OSO3--SAM surface. The deactivation of redox properties for Cyt-c adsorbed on the highly negatively-charged surface is due to the confinement of heme reorientation and the farther position of the central iron to the surfaces, as well as the relatively larger conformation change of Cyt-c adsorbed on the OSO3--SAM surface. This work may provide insightful guidance for the design of Cyt-c-based bioelectronic devices and controlled enzyme immobilization.
在这项工作中,通过组合平行温度蒙特卡罗和分子动力学模拟研究了细胞色素 c(Cyt-c)在五种不同自组装单层(SAM)上的吸附行为(即 CH3-SAM、OH-SAM、NH2-SAM、COOH-SAM 和 OSO3--SAM)。结果表明,Cyt-c 通过疏水区(特别是 Ile81)与 CH3-SAM 结合,并发生轻微的重新取向,而在 OH-SAM 上的吸附则相对较弱。即使在相对较高的离子强度条件下,Cyt-c 也不能稳定地结合到较低表面电荷密度(SCD,7%质子化)的 NH2-SAM 上,而较高的 SCD(25%质子化)促进了 Cyt-c 在 NH2-SAM 上的吸附。无论表面化学性质和 SCD 如何,Cyt-c 在带负电荷表面上的优先吸附取向都非常相似。随着 SCD 的增加,更多的抗衡离子被吸引到带电表面上,形成明显的抗衡离子层。Cyt-c 的二级结构在这些 SAM 上保持良好,除了 OSO3--SAM 表面。Cyt-c 在高度带负电荷表面上的氧化还原性质失活是由于血红素重取向的限制以及中心铁与表面的更远位置,以及在 OSO3--SAM 表面上吸附的 Cyt-c 的相对较大构象变化所致。这项工作可为基于 Cyt-c 的生物电子器件和控制酶固定化的设计提供有见地的指导。