Engel Dominik, Hoffmann Maximilian, Kosfeld Udo, Mann Marcel
AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany.
Biotechnol Bioeng. 2025 Jan;122(1):110-122. doi: 10.1002/bit.28855. Epub 2024 Oct 11.
This study explores methane utilization by the methanotrophic microorganism Methylococcus capsulatus (Bath) for biomass production, presenting a promising approach to mitigate methane emissions and foster the development sustainable biomaterials. Traditional screening methods for gas cultivations involve either serum flasks without online monitoring or costly, low-throughput fermenters. To address these limitations, the Respiration Activity MOnitoring System was augmented with methane sensors for real-time methane transfer rate (MTR) monitoring in shake flasks. Utilizing online monitoring of the MTR in shake flasks results in enhanced throughput and cost-effectiveness for cultivating M. capsulatus. Simultaneous monitoring of transfer rates for oxygen, methane, and carbon dioxide was conducted in up to eight shake flasks, ensuring the success of the cultivation process. Alterations in methane-to-oxygen transfer rate ratios and carbon fixation rates reveal the impact of transfer limitations on microbial growth. Detection of gas transfer limitations, exploration of process parameter influences, and investigations of medium components were enabled by the introduced method. Optimal nitrogen concentrations could be determined to ensure optimal growth. This streamlined approach accelerates the screening process, offering efficient investigations into metabolic effects, limitations, and parameter influences in gas fermentations without the need for elaborate offline sampling, significantly reducing costs and enhanced reproducibility.
本研究探索了甲烷营养型微生物荚膜甲基球菌(巴斯德菌株)利用甲烷进行生物质生产的情况,提出了一种减轻甲烷排放并促进可持续生物材料发展的有前景的方法。传统的气体培养筛选方法要么是没有在线监测的血清瓶,要么是成本高、通量低的发酵罐。为了解决这些局限性,在呼吸活性监测系统中增加了甲烷传感器,以实时监测摇瓶中的甲烷传递速率(MTR)。利用摇瓶中MTR的在线监测可提高荚膜甲基球菌培养的通量和成本效益。在多达八个摇瓶中同时监测氧气、甲烷和二氧化碳的传递速率,确保培养过程的成功。甲烷与氧气传递速率比和碳固定率的变化揭示了传递限制对微生物生长的影响。所引入的方法能够检测气体传递限制、探索工艺参数影响以及研究培养基成分。可以确定最佳氮浓度以确保最佳生长。这种简化的方法加快了筛选过程,能够在无需复杂离线采样的情况下,对气体发酵中的代谢效应、限制因素和参数影响进行高效研究,显著降低成本并提高重现性。