School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China.
National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei, 230601, China.
Environ Monit Assess. 2024 Oct 11;196(11):1044. doi: 10.1007/s10661-024-13221-w.
Tea leaf blight (TLB) is a common disease of tea plants and is widely distributed in tea gardens. Although the use of unmanned aerial vehicle (UAV) remote sensing can help to achieve a wider scale for TLB detection, the blurring of UAV images, overlapping of tea leaves, and small size of TLB spots pose significant challenges to the task of detection. This study proposes a method of detecting TLB in UAV remote sensing images by integrating super-resolution (SR) and detection networks. We use an SR network called SERB-Swin2sr to reconstruct the detailed features of UAV images and solve the problem of detail loss caused by the blurring in UAV images. In SERB-Swin2sr, a squeeze-and-excitation ResNet block (SERB) is introduced to enhance the models' ability to extract the target details in the images, and the convolution stem replaces the convolution block in order to increase the convergence rate and stability of the network. A detection network called SDDA-YOLO is applied to achieve precise detection of TLB in UAV remote sensing images. In SDDA-YOLO, a shuffle dual-dimensional attention (SDDA) module is introduced to enhance the feature fusion capability of the network, and an Xsmall-scale detection layer is used to enhance the detection ability of small lesions. Experimental results show that the proposed method is superior to current detection methods. Compared with a baseline YOLOv8 model, the precision, mAP@0.5, and mAP@0.5:0.95 of the proposed method are improved by 4.2%, 1.6%, and 1.8%, and the size of our model is only 4.6 MB.
茶树叶枯病(TLB)是茶树的常见病,广泛分布于茶园。虽然使用无人机(UAV)遥感可以帮助实现更广泛的 TLB 检测范围,但 UAV 图像的模糊、茶叶重叠和 TLB 斑点小等问题给检测任务带来了很大的挑战。本研究提出了一种利用超分辨率(SR)和检测网络相结合的方法来检测 UAV 遥感图像中的 TLB。我们使用了一个名为 SERB-Swin2sr 的 SR 网络来重建 UAV 图像的详细特征,并解决了 UAV 图像模糊导致的细节丢失问题。在 SERB-Swin2sr 中,引入了一种挤压激励 ResNet 块(SERB)来增强模型提取图像中目标细节的能力,并用卷积干取代卷积块以提高网络的收敛速度和稳定性。我们还应用了一个名为 SDDA-YOLO 的检测网络来实现 UAV 遥感图像中 TLB 的精确检测。在 SDDA-YOLO 中,引入了一种洗牌二维注意力(SDDA)模块来增强网络的特征融合能力,并使用了一个 X 小尺度检测层来增强小病灶的检测能力。实验结果表明,所提出的方法优于当前的检测方法。与基线 YOLOv8 模型相比,所提出的方法的精度、mAP@0.5 和 mAP@0.5:0.95 分别提高了 4.2%、1.6%和 1.8%,而我们模型的大小仅为 4.6MB。