Suppr超能文献

应用评价与原生及工程化生物传感器的性能改进。

Application Evaluation and Performance-Directed Improvement of the Native and Engineered Biosensors.

机构信息

Department of Gastroenterology, Aerospace Center Hospital, College of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun Street, Beijing 100081, China.

Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China.

出版信息

ACS Sens. 2024 Oct 25;9(10):5002-5024. doi: 10.1021/acssensors.4c01072. Epub 2024 Oct 11.

Abstract

Transcription factor (TF)-based biosensors (TFBs) have received considerable attention in various fields due to their capability of converting biosignals, such as molecule concentrations, into analyzable signals, thereby bypassing the dependence on time-consuming and laborious detection techniques. Natural TFs are evolutionarily optimized to maintain microbial survival and metabolic balance rather than for laboratory scenarios. As a result, native TFBs often exhibit poor performance, such as low specificity, narrow dynamic range, and limited sensitivity, hindering their application in laboratory and industrial settings. This work analyzes four types of regulatory mechanisms underlying TFBs and outlines strategies for constructing efficient sensing systems. Recent advances in TFBs across various usage scenarios are reviewed with a particular focus on the challenges of commercialization. The systematic improvement of TFB performance by modifying the constituent elements is thoroughly discussed. Additionally, we propose future directions of TFBs for developing rapid-responsive biosensors and addressing the challenge of application isolation. Furthermore, we look to the potential of artificial intelligence (AI) technologies and various models for programming TFB genetic circuits. This review sheds light on technical suggestions and fundamental instructions for constructing and engineering TFBs to promote their broader applications in Industry 4.0, including smart biomanufacturing, environmental and food contaminants detection, and medical science.

摘要

转录因子(TF)生物传感器(TFBs)由于能够将生物信号(如分子浓度)转换为可分析的信号,从而避免了对耗时且费力的检测技术的依赖,因此在各个领域受到了广泛关注。天然 TF 是为了维持微生物的生存和代谢平衡而进化优化的,而不是为了实验室场景。因此,天然 TFB 通常表现出较差的性能,例如低特异性、窄动态范围和有限的灵敏度,这限制了它们在实验室和工业环境中的应用。

本工作分析了 TFBs 的四种调控机制,并概述了构建高效传感系统的策略。综述了各种应用场景下 TFBs 的最新进展,特别关注其商业化面临的挑战。通过修改组成元件对 TFB 性能进行系统改进进行了深入讨论。此外,我们还提出了开发快速响应生物传感器和解决应用隔离挑战的 TFB 未来发展方向。此外,我们还探讨了人工智能(AI)技术和各种模型在编程 TFB 遗传电路方面的潜力。

本综述为构建和工程化 TFB 提供了技术建议和基本指导,以促进它们在工业 4.0 中的更广泛应用,包括智能生物制造、环境和食品污染物检测以及医学科学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验