Song Kyeongseok, Ji Haekang, Lee Jiwon, Jang Geupil, Yoon Youngdae
Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
Biosensors (Basel). 2025 Aug 21;15(8):554. doi: 10.3390/bios15080554.
TtgR, a transcriptional repressor from , plays a key role in regulating multidrug resistance by controlling the expression of genes in response to various ligands. Despite its broad specificity, TtgR represents a promising candidate for the development of transcription factor (TF)-based biosensors. In this study, we utilized TtgR and its native promoter region (P) as genetic components to construct TF-based biosensors in . By coupling TtgR and P with , we developed a biosensor responsive to diverse flavonoids. To enhance the selectivity and specificity of the biosensor, we genetically engineered a TtgR-binding pocket. Engineered TtgR variants exhibited altered sensing profiles, enabling the development of biosensors with tailored ligand responses. Computational structural analysis and ligand docking provided insights into the interaction mechanisms between TtgR variants and flavonoids. Notably, biosensors based on wild-type TtgR and its N110F mutant were capable of quantifying resveratrol and quercetin at 0.01 mM with >90% accuracy. Although the precise molecular mechanisms involved remain unclear and further optimization is needed, the biosensors developed herein demonstrate strong potential for applications in numerous fields. This study lays the foundation for future research that could extend the utility of TtgR-based biosensors to synthetic biology, metabolic engineering, and beyond.
TtgR是一种来自[具体来源未提及]的转录阻遏物,它通过控制基因表达以响应各种配体,在调节多药耐药性方面发挥关键作用。尽管TtgR具有广泛的特异性,但它是基于转录因子(TF)的生物传感器开发的一个有前景的候选物。在本研究中,我们利用TtgR及其天然启动子区域(P)作为遗传元件,在[具体物种或系统未提及]中构建基于TF的生物传感器。通过将TtgR和P与[具体内容未提及]偶联,我们开发了一种对多种黄酮类化合物有响应的生物传感器。为了提高生物传感器的选择性和特异性,我们对TtgR结合口袋进行了基因工程改造。工程化的TtgR变体表现出改变的传感谱,从而能够开发出具有定制配体响应的生物传感器。计算结构分析和配体对接为TtgR变体与黄酮类化合物之间的相互作用机制提供了见解。值得注意的是,基于野生型TtgR及其N110F突变体的生物传感器能够以>90%的准确度在0.01 mM下定量白藜芦醇和槲皮素。尽管所涉及的精确分子机制仍不清楚且需要进一步优化,但本文开发的生物传感器在众多领域显示出强大的应用潜力。本研究为未来的研究奠定了基础,未来的研究可能会将基于TtgR的生物传感器的应用扩展到合成生物学、代谢工程等领域。