Suppr超能文献

基于人工智能的术前身体成分评估与根治性膀胱切除术后早期并发症相关。

Artificial Intelligence-Based Assessment of Preoperative Body Composition Is Associated With Early Complications After Radical Cystectomy.

作者信息

Sharma Vidit, Fadel Anthony, Tollefson Matthew K, Psutka Sarah P, Blezek Daniel J, Frank Igor, Thapa Prabin, Tarrell Robert, Viers Lyndsay D, Potretzke Aaron M, Hartman Robert P, Boorjian Stephen A, Viers Boyd R

机构信息

Department of Urology, Mayo Clinic, Rochester, Minnesota.

Department of Urology, University of Washington, Seattle, Washington.

出版信息

J Urol. 2025 Feb;213(2):228-237. doi: 10.1097/JU.0000000000004292. Epub 2024 Oct 11.

Abstract

PURPOSE

We aimed to use a validated artificial intelligence (AI) algorithm to extract muscle and adipose areas from CT images before radical cystectomy (RCx) and then correlate these measures with 90-day post-RCx complications.

MATERIALS AND METHODS

A tertiary referral center's cystectomy registry was queried for patients who underwent RCx between 2009 and 2017 for bladder cancer. Eight hundred forty-three RCx patients with CT imaging within 90 days of preceding surgery were included, to allow for extraction of body composition parameters by AI. We assessed complications within 90 days of surgery including wound, infectious, and major complications; readmission; and death. Multivariable logistic regressions associated pre-RCx measures with post-RCx complications.

RESULTS

Increasing subcutaneous adipose tissue was associated with more wound complications, while patients with increasing visceral adipose tissue had greater odds of infectious-related complications. After adjusting for patient characteristics, every 10 cm increases in fat mass index were associated with more infectious (odds ratio [OR], 1.04; = .002) and wound (OR, 1.06; < .001) complications. On multivariable analysis, a higher preoperative skeletal muscle index was associated with lower odds of major complications (OR, 0.75 for every 10 cm; = .008), while higher intramuscular adipose was associated with higher odds of major complications (OR, 1.93; = .008).

CONCLUSIONS

Automated AI body composition measurements preoperatively are associated with post-RCx complications. These measurements, in addition to patient (Eastern Cooperative Oncology Group performance status and smoking status) and surgical (robotic approach and continent diversion) characteristics, can then be used to individualize patient counseling and facilitate triage of nutritional and rehabilitation efforts.

摘要

目的

我们旨在使用一种经过验证的人工智能(AI)算法,在根治性膀胱切除术(RCx)前从CT图像中提取肌肉和脂肪区域,然后将这些测量结果与RCx术后90天的并发症进行关联分析。

材料与方法

查询一家三级转诊中心的膀胱切除术登记处,筛选出2009年至2017年间因膀胱癌接受RCx的患者。纳入843例术前90天内有CT成像的RCx患者,以便通过AI提取身体成分参数。我们评估了术后90天内的并发症,包括伤口、感染和重大并发症;再入院情况;以及死亡情况。多变量逻辑回归分析将RCx术前的测量结果与术后并发症相关联。

结果

皮下脂肪组织增加与更多伤口并发症相关,而内脏脂肪组织增加的患者发生感染相关并发症的几率更高。在对患者特征进行调整后,脂肪质量指数每增加10 cm,感染性并发症(优势比[OR],1.04;P = 0.002)和伤口并发症(OR,1.06;P < 0.001)的发生几率更高。在多变量分析中,术前骨骼肌指数较高与重大并发症的发生几率较低相关(每10 cm的OR为0.75;P = 0.008),而肌内脂肪含量较高与重大并发症的发生几率较高相关(OR,1.93;P = 0.008)。

结论

术前通过AI自动测量身体成分与RCx术后并发症相关。这些测量结果,连同患者(东部肿瘤协作组体能状态和吸烟状况)和手术(机器人手术方式和可控性尿流改道)特征,可用于为患者提供个性化咨询,并促进营养和康复措施的分类管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验