Clinical Microbiology PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar-190005, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
ACS Infect Dis. 2024 Nov 8;10(11):3736-3743. doi: 10.1021/acsinfecdis.4c00476. Epub 2024 Oct 11.
Candidiasis, a condition spurred by the unchecked proliferation of species, poses a formidable global health threat, particularly in immunocompromised individuals. The emergence of drug-resistant strains complicates management strategies, necessitating novel therapeutic avenues. Antimicrobial peptides (AMPs) have garnered attention for their potent antifungal properties and broad-spectrum activity against species. This study assessed the antifungal effectiveness of ultrashort β-peptides against strains, with a specific focus on peptide P3 (LAU-β3,3-Pip-β2,2-Ac6c-PEA). Our findings showed P3's remarkable fungistatic and fungicidal activities against , exhibiting an MIC of 4 μg/mL, comparable to those of standard antifungal drugs. The MIC value remained unchanged in the presence of ADC and BSA, indicating that serum albumin does not diminish the activity of P3. P3 demonstrates synergistic effects when combined with Fluconazole (FLU), Itraconazole (ITR), and Nystatin (NYS) to the extent that it becomes effective at 0.125, 0.125, and 0.03125 μg/mL, respectively. Concentration versus time-kill kinetics showed its time-dependent activity up to the first 12 h against , and later concentration also played a role; indeed, at 24 h the whole culture was sterilized at 8× MIC. Post-antifungal effect assays confirmed prolonged suppression of pathogen growth after the removal of P3 from the media for significant durations. More importantly, P3 inhibits hyphae formation and biofilm development of , outperforming Fluconazole with respect to these properties. Mechanistic insights display P3's potential to disrupt fungal cell membrane integrity and dose-dependent inhibition of ergosterol biosynthesis, essential for fungal cell wall integrity. Using the Bradford assay, it was observed that extracellular protein concentrations increased with higher doses of the compound, thereby validating the effect of P3 on membrane integrity. A comparative gene analysis using RT-PCR showed that P3 downregulates ERG3, ERG11, and HWP1, which are crucial for the survival and pathogenicity of . The impact of P3 on ERG11 and ERG3 is more effective than that of Fluconazole. Molecular docking studies revealed strong binding of P3 to various isoforms of lanosterol 14-α-demethylase, a key enzyme in ergosterol synthesis. Furthermore, molecular dynamic simulations validated the stability of the most promising docking complex. Overall, our findings underscore P3's potential as a leading candidate for the development of innovative antifungal therapies, warranting further investigation and optimization.
假丝酵母菌病是一种由物种不受控制的过度繁殖引起的疾病,它对全球健康构成了严重威胁,尤其是对免疫功能低下的个体。抗药性菌株的出现使管理策略变得复杂,需要新的治疗途径。抗菌肽(AMPs)因其强大的抗真菌特性和对多种物种的广谱活性而受到关注。本研究评估了超短 β-肽对假丝酵母菌株的抗真菌效果,特别关注肽 P3(LAU-β3,3-Pip-β2,2-Ac6c-PEA)。我们的研究结果表明,P3 对假丝酵母菌具有显著的抑菌和杀菌活性,其 MIC 值为 4 μg/mL,与标准抗真菌药物相当。在存在 ADC 和 BSA 的情况下,MIC 值保持不变,表明血清白蛋白不会降低 P3 的活性。P3 与氟康唑(FLU)、伊曲康唑(ITR)和制霉菌素(NYS)联合使用时具有协同作用,其效果分别在 0.125、0.125 和 0.03125 μg/mL 时显现出来。浓度与时间杀菌动力学显示,它在最初的 12 小时内对假丝酵母菌具有时间依赖性活性,随后浓度也发挥了作用;事实上,在 24 小时时,整个培养物在 8×MIC 时被杀菌。抗真菌后效应测定证实,P3 从培养基中去除后,在较长时间内仍能抑制病原体的生长。更重要的是,P3 抑制了假丝酵母菌的菌丝形成和生物膜的发展,在这些特性方面优于氟康唑。机制研究表明,P3 有可能破坏真菌细胞膜的完整性,并抑制麦角固醇生物合成,这对真菌细胞壁的完整性至关重要。使用 Bradford 测定法观察到,随着化合物剂量的增加,细胞外蛋白浓度增加,从而验证了 P3 对膜完整性的影响。使用 RT-PCR 进行的比较基因分析表明,P3 下调了 ERG3、ERG11 和 HWP1,这些基因对假丝酵母菌的存活和致病性至关重要。P3 对 ERG11 和 ERG3 的影响比氟康唑更有效。分子对接研究表明,P3 与麦角固醇 14-α-去甲基酶的各种同工型结合牢固,该酶是麦角固醇合成的关键酶。此外,分子动力学模拟验证了最有前途的对接复合物的稳定性。总的来说,我们的研究结果强调了 P3 作为开发创新型抗真菌疗法的潜在候选药物的潜力,值得进一步研究和优化。