Bollmann Steffen, Setty Chandan, Seifert Urban F P, König Elio J
<a href="https://ror.org/005bk2339">Max-Planck Institute for Solid State Research</a>, 70569 Stuttgart, Germany.
Department of Physics and Astronomy, Rice Center for Quantum Materials, <a href="https://ror.org/008zs3103">Rice University</a>, Houston, Texas 77005, USA.
Phys Rev Lett. 2024 Sep 27;133(13):136504. doi: 10.1103/PhysRevLett.133.136504.
The interplay of topological electronic band structures and strong interparticle interactions provides a promising path towards the constructive design of robust, long-range entangled many-body systems. As a prototype for such systems, we here study an exactly integrable, local model for a fractionalized topological insulator. Using a controlled perturbation theory about this limit, we demonstrate the existence of topological bands of zeros in the exact fermionic Green's function and show that in this model they do affect the topological invariant of the system, but not the quantized transport response. Close to (but prior to) the Higgs transition signaling the breakdown of fractionalization, the topological bands of zeros acquire a finite "lifetime." We also discuss the appearance of edge states and edge zeros at real space domain walls separating different phases of the system. This model provides a fertile ground for controlled studies of the phenomenology of Green's function zeros and the underlying exactly solvable lattice gauge theory illustrates the synergetic cross pollination between solid-state theory, high-energy physics, and quantum information science.
拓扑电子能带结构与强粒子间相互作用的相互作用为构建稳健的、长程纠缠多体系统提供了一条有前景的途径。作为此类系统的一个原型,我们在此研究一种用于分数化拓扑绝缘体的精确可积局部模型。利用关于此极限的可控微扰理论,我们证明了精确费米子格林函数中零拓扑能带的存在,并表明在该模型中它们确实会影响系统的拓扑不变量,但不会影响量子化的输运响应。在标志着分数化崩溃的希格斯转变附近(但在此之前),零拓扑能带获得了有限的“寿命”。我们还讨论了在分隔系统不同相的实空间畴壁处边缘态和边缘零的出现。该模型为对格林函数零点现象学进行可控研究提供了一个丰富的平台,并且基础的精确可解晶格规范理论展示了固态理论、高能物理和量子信息科学之间的协同交叉影响。